Wayland E. Noland,* Nicholas P. Lanzatella, Lakshmanan Venkatraman, Nicholas F. Anderson, and Glen C. Gullickson

Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
*E-mail: nolan001@umn.edu
Additional Supporting Information may be found in the online version of this article. Received March 2, 2009
DOI 10.1002/jhet. 198
Published online 4 November 2009 in Wiley InterScience (www.interscience.wiley.com).

Abstract

Variously substituted 2-vinylpyrroles underwent an endo-addition [4+2] cycloaddition reaction with maleimides followed by a spontaneous highly diastereoselective ($93-98 \% \mathrm{de}$) isomerization to give tetrahydroindoles in moderate to excellent yield. Treatment with activated MnO_{2} in refluxing toluene provided the corresponding indoles in moderate to good yield. This highly convergent methodology for formation of indoles is versatile and the starting materials are conveniently prepared.

J. Heterocyclic Chem., 46, 1154 (2009).

INTRODUCTION

The formation of indole continues to attract much study [1] because of its frequent occurrence in nature and its biological activity in both natural [2] and synthetic [3] products. We have reported that 3-vinylindoles are generated from condensation of indole and ketones, which then undergo an in situ Diels-Alder reaction with maleimides to form tetrahydrocarbazoles [4]. We recently reported the analogous work in which pyrroles are condensed with cyclic ketones to give 2 -vinylpyrroles that also undergo in situ Diels-Alder reactions with maleimides to give the corresponding tetrahydroindoles, many of which exhibited high levels of in vitro activity against a variety of human cancer cell lines [5]. Although the in situ Diels-Alder approach toward indoles is advantageous with its one-pot method, it is somewhat limited in that acidic conditions are required to catalyze the condensation, and pyrroles are well known to form polymers under acidic conditions [6]. Indeed, we battled with the formation of polymeric material when using vinylpyrroles for in situ Diels-Alder reactions and found that to circumvent the problem, the use of 5-alkyl-substituted pyrroles was essential.

These results inspired us to explore the Diels-Alder chemistry of separately prepared 2 -vinylpyrroles. Preparing the vinylpyrrole in a separate step via methods not
using acidic conditions has the advantage of allowing the use of 5-unsubstituted 2-vinylpyrroles in Diels-Alder reactions. In addition, we were interested in effecting aromatization of the resulting tetrahydroindoles to give indoles. Some studies have been conducted on this route toward indoles using as the dienophiles carboxyl-substituted acetylenes $[7,8]$, several acyclic electron-deficient alkenes $[8,9]$, maleic anhydride and/or N-phenylmaleimide with N-benzenesulfonyl-2-vinylpyrrole $[9,10]$ and methyl 3-nitroacrylate with N-p-toluenesulfonyl-2-vinylpyrroles [11] (neither of which was taken through to the aromatic indole), tetrachloro- or tetrabromocyclopropene with N-p-toluenesulfonyl-2-vinylpyrrole [12], N-phenylmaleimide with N-methyl- and N-propanoyloxy-2-vinylpyrrole [9], N-H-maleimide with 3 -(N-alkyl-2-pyrrolyl) acrylates [13] and N-alkyl-2-styrylpyrroles [13,14], and one report using various maleimides with both $N-\mathrm{H}$ and N-alkyl-2-vinylpyrroles [15]. Several of these studies report biological activity from this class of compounds, particularly anticancer activity [13-15]. To our knowledge, no prior broad study of the efficacy of the synthesis of indoles via Diels-Alder reactions of 5-unsubstituted 2-vinylpyrroles with N -substituted maleimides has been reported. In most of the earlier studies, only N -alkyl-substituted pyrroles were studied, presumably due to both the higher reactivity of $\mathrm{N}-\mathrm{H}$ pyrroles and the formation of Michael-addition products between the adduct

Scheme 1. Synthesis of 2-vinylpyrroles.

and dienophile when certain N -H-2-vinylpyrroles are used in Diels-Alder reactions, reported here for the first time. None of the earlier studies has characterized the diastereoselective isomerism of the adduct, potentially valuable for synthetic applications. We report here the first demonstration of the use of chiral maleimides in Diels-Alder reactions with 2-vinylpyrroles.

Herein, we report 38 examples where indoles are conveniently available from oxidation of the corresponding tetrahydroindoles, formed via Diels-Alder reactions of both $\mathrm{N}-\mathrm{H}$ and N -alkyl-2-vinylpyrroles with a wide range of N -substituted maleimides. We also report a highly diastereoselective isomerism of the Diels-Alder adduct, and isolation of Michael-addition products between the adduct and the dienophile with the major product being the more sterically congested diastereomer. Additionally, we report an improved synthesis of N -H-2-vinylpyrrole.

RESULTS AND DISCUSSION

Synthesis of starting materials. A Vilsmeier-Haack formylation [16] was performed on the appropriate pyrrole (1a and 1b, Scheme 1) to give pyrrole-2-carboxaldehydes $\mathbf{2 a}$ and $\mathbf{2 b}$. Next, a Wittig reaction was conducted on $\mathbf{2 a}$ and $\mathbf{2 b}$ or on commercially available $\mathbf{2 c}$ and $\mathbf{2 d}$ to form the appropriate vinylpyrrole 3-6 [7a, $8,17,18]$. Various procedures for the Wittig reaction were used to synthesize the vinylpyrroles. The common procedure for the synthesis of 2-vinylpyrroles [18,19] using sodium ethoxide as the base for formation of the ylide was used to make methyl-substituted vinylpyrroles $\mathbf{3 a}-\mathbf{3 g}$. For vinylpyrroles $\mathbf{3 b}, \mathbf{3 c}, \mathbf{3 f}$, and $\mathbf{3 g}$, this procedure gave $\sim 1: 3.9,2.8: 1,1: 1.8$, and 1:1.5 $E: Z$ molar mix-
tures, respectively, as determined by ${ }^{1} \mathrm{H}$ NMR, which were used without further purification for formation of the Diels-Alder adducts. Vinylpyrrole 3a decomposed or polymerized [20] rapidly at room temperature (rt) to a dark viscous liquid before it could be used in any DielsAlder reaction.

Although the sodium ethoxide procedure produced the desired N-H-2-vinylpyrrole 4, it also consistently gave a 1:1 molar ratio of the unwanted and not easily separated byproduct 2-(1-ethoxyethyl)-pyrrole 7. X-ray crystallography proved the structure of 7 (Fig. 1). The isolation of 7 was surprising, considering the lack of mention of this compound in any literature procedure for synthesis of 4. Although the mixture of 4 and 7 was used as is for

Figure 1. ORTEP representation of the X-ray structure of 2-(1-ethoxyethyl)pyrrole (7).

Scheme 2. Synthesis of maleimides.

formation of the Diels-Alder adducts, a search for a way to avoid contamination with this impurity was sought, which probably comes from an acid-catalyzed addition of ethoxide to the vinyl group in the expected Markovnikov orientation. Eliminating the acidic aqueous sodium bisulfite wash from the workup had no effect on the proportion of 7 formed. Heating the mixture of 4 and 7 in DMSO was attempted with the hope of effecting deethanolysis, which did occur, but with the destruction of a large amount of the desired 4, probably from polymerization. It was found that using sodium t-butoxide in place of sodium ethoxide completely eliminated the byproduct and gave a higher efficiency than the sodium ethoxide procedure, with a consistent yield of $\sim 80 \%$, and less need for excess methyltriphenylphosphonium bromide and base (1.25 equiv) than was required for complete conversion using the sodium ethoxide procedure (2 equiv).

To determine whether the Diels-Alder reactions of 2vinylpyroles with maleimides took place with the predicted endo-addition, vinylpyrroles with predominantly E or Z stereochemistry were desired. Ethyl- and pentylsubstituted vinylpyrroles $\mathbf{5 a}$ and $\mathbf{5 b}$ were made from aldehyde 2a with the Corey procedure for the Wittig reaction [21], using methylsulfinyl carbanion as the base, formed from the reaction of DMSO with sodium hydride. ${ }^{1} \mathrm{H}$ NMR analysis showed that this procedure gave 5a [18a] exclusively as the Z isomer and $\mathbf{5 b}$ in a 1:9 E:Z mixture. For comparison of the stereochemistry in the resulting Diels-Alder adducts, (E)-2-(2-ethylvinyl)pyrrole 6 [18a] was synthesized using the Schlosser modification of the Wittig reaction [22], giving a 40% yield of an $\sim 12: 1 E: Z$ molar mixture.

Maleimides were synthesized by the typical procedure [23], by reaction of maleic anhydride $\mathbf{8}$ with the appropriate primary amine $\mathbf{9 a}-\mathbf{9 1}$ and $\mathbf{9 n - 9 0}$, and then heating the resulting amide-acid in an excess of acetic anhydride (10 equiv) with sodium acetate (0.5 equiv), giving the corresponding N-substituted maleimide (10a-10n, Scheme 2). When the acid from reaction of $\mathbf{8}$ with (R) -(-)-phenylglycinol (90) was cyclized, the primary alcohol group was acetylated, giving acetate $\mathbf{1 0 m}$. To make the chiral methyl ether 10n, (R)-2-methoxy-1-phenyle-
thanamine ($\mathbf{9 n}$) was synthesized by methylation of $\mathbf{9 0}$ by reaction of sodium hydride followed by addition of methyl iodide [24].

Diels-Alder reactions. Diels-Alder reactions of 2vinylpyrroles $\mathbf{3 b} \mathbf{- 3 g}, \mathbf{4}$, and 5a with maleimides 10a$\mathbf{1 0 f}, \mathbf{1 0 h}, 10 \mathrm{~m}$, and $\mathbf{1 0 n}$ in chloroform gave adducts 11 29, 31, and 39-51 (Scheme 3, Table 1). The chiral adducts 39-51 were not isolated but were taken directly through to the aromatic indoles 85-97 (Scheme 4). The reaction solution was refluxed, if necessary, and stopped when complete, as indicated by TLC. Alternatively, the Diels-Alder reactions of 2-vinylpyrroles 5 and 6 with maleimides $\mathbf{1 0 c}, \mathbf{1 0 d}, \mathbf{1 0 g}$, and $\mathbf{1 0 i} \mathbf{- 1 0 l}$ were run in refluxing toluene, giving adducts $\mathbf{3 0} \mathbf{- 3 8}$. In both procedures, vinylpyrroles 3-6 were used in slight excess (1.1 equiv) to simplify the required chromatographic purification procedure, because, while the vinylpyrroles were always eluted first, unreacted maleimides generally were eluted very near to the adducts. The unrearranged adducts were not isolated in any case; instead, the rearomatized form of the adducts was obtained. Although an extensive case-by-case comparison of the efficiency of the two procedures was not undertaken, adduct 31 was produced in both chloroform (70% yield) and toluene (41%). Further, comparing the average yield of the toluene-procedure-derived products $\mathbf{3 0 - 3 8}$ (38\%) to the average yield of the chloroform-procedure-derived products 12, 14, 15, 17-29, and 31 (73\%), the chloroform procedure gave better yields.

To determine whether endo- or exo-addition was predominant, the orientation of a terminal substituent on the vinyl group of the pyrrole was studied in the resulting isomerized adducts using nuclear Overhauser effect (NOE) experiments (Fig. 2). For description of the orientation, the diastereomer with the syn $3 \mathrm{a}-\mathrm{H}$ and $8 \mathrm{~b}-\mathrm{H}$ protons (Fig. 3) protruding from the α-face and the fused maleimide protruding from the β-face will always be used, corresponding to the structures at the top of Figure 2, this convention is also used throughout the Experimental.

2-(2-Methylvinyl)-pyrroles $\mathbf{3 b}$ and $\mathbf{3 f}$ gave the expected mixture of $4 \alpha-\mathrm{Me}$ and $4 \beta-\mathrm{Me}$ in rearranged adducts 24-29, expected for either endo- or exo-
Scheme 3. Diels-Alder reactions of 2-vinylpyrroles.

3b, 3d-3f, 4-6

21-23
R^{1} $\mathbf{2 1}_{\mathbf{2 2}^{\mathrm{a}}}{ }^{\mathrm{a}} \mathrm{N}, \mathrm{N}$ - Ph DiMe

18-20
R^{1}
$18^{\mathrm{b}} \mathrm{N}, N$
$19^{\mathrm{b}} \mathrm{Ph}$
$20^{\mathrm{b}} \frac{\mathrm{P}}{4}$
not isolated

* Detected by TLC but not isolated.
$3^{\mathrm{c}}{ }^{\mathrm{c}}{ }_{n-\mathrm{Pe}}$

Reaction conditions: ${ }^{\text {a }} \mathrm{CHCl}_{3}, \mathrm{rt}, 24 \mathrm{~h}{ }^{\mathrm{b}} \mathrm{CHCl}_{3}$, reflux, $24 \mathrm{~h}{ }^{\mathrm{c}} \mathrm{PhMe}$, reflux, 24 h
addition. (Z)-2-Vinylpyrroles 5a and 5b gave adducts $\mathbf{3 0}-\mathbf{3 7}$ with exclusively 4α-Et and $4 \alpha-n$-pentyl substituents, as shown by ${ }^{1} \mathrm{H}$ NMR analysis. Correspondingly, adduct 38 from the E-vinylpyrrole $\mathbf{6}$ had mainly $4 \beta-\mathrm{Me}$ with $\sim 12: 1$ ratio of 4β-Et to 4α-Et product. To the extent of ${ }^{1} \mathrm{H}$ NMR sensitivity, this is strong evidence of predominantly endo-addition Diels-Alder reactions.

The spontaneous rearrangement of Diels-Alder adducts to their aromatic counterparts was also observed in our previous work with in situ Diels-Alder reactions of 2-vinylpyrrole with maleimides [5]. As noted in that work, because orbital symmetry considerations forbid suprafacial 1,3-hydride shifts and antarafacial 1,3hydride shifts are geometrically difficult [25], the isomerism probably takes place via acid catalysis, a "formal 1,3-hydride shift" [26]. A proton should approach from the least sterically hindered face of the adduct, the opposite face from which the maleimide protrudes and
the same face from which the $8 \mathrm{~b}-\mathrm{H}$ and $3 \mathrm{a}-\mathrm{H}$ protons protrude (the α-face); thus, the $5-\mathrm{H}$ proton of the rearranged adduct would have the predominant orientation of α. The predominance of a particular diastereomer was observed in our earlier work [4,5], and to verify it occurred here as well, NOE experiments were performed on the rearranged adducts 22 and 23, which had a methyl substituent at the 5-postion; compound 21 had overlapping ${ }^{1} \mathrm{H}$ NMR peaks which prevented accurate measurement of NOE interactions. The assignment of the two peaks corresponding to the $4 \alpha-\mathrm{H}$ and $4 \beta-\mathrm{H}$ protons was confirmed by a weak NOE interaction between the $8 b \alpha-H$ and $4 \alpha-\mathrm{H}$ protons, whereas no interaction between the $8 \mathrm{~b} \alpha-\mathrm{H}$ and $4 \beta-\mathrm{H}$ protons was observed. Additionally, a much stronger interaction was observed between the $3 \mathrm{a} \alpha-\mathrm{H}$ and $4 \alpha-\mathrm{H}$ protons than between the $3 \mathrm{a} \alpha-\mathrm{H}$ and $4 \beta-\mathrm{H}$ protons. A strong NOE interaction between the $4 \alpha-\mathrm{H}$ and $5-\mathrm{H}$ protons occurred, with no

Table 1
Diels-Alder reactions of 2-vinylpyrroles.

Vinylpyrrole	Maleimide	R^{1}	R^{2}	R^{3}	R^{4}	Conditions	Adduct	$\begin{gathered} \text { Yield } \\ \% \end{gathered}$	PhMe reflux t	Indole	Yield $\%^{a}$
4	10a	$N, N-\mathrm{DiMe}$	H	H	H	CHCl_{3}, reflux 24 h	11	- ${ }^{\text {b }}$	24 h	60	64
4	10b	Bn	H	H	H	CHCl_{3}, rt 24 h	12	23	3 h	61	45
4	10c	Ph	H	H	H	CHCl_{3}, reflux 24 h	13	$-{ }^{\text {b }}$	24 h	62	67
4	10d	4-EtPh	H	H	H	CHCl_{3}, rt 24 h	14	49	3 h	63	47
4	10e	$4-i \mathrm{PrPh}$	H	H	H	CHCl_{3}, rt 24 h	15	32	3 h	64	61
4	10 f	4-(MeO) Ph	H	H	H	CHCl 3 , reflux 24 h	16	$-{ }^{\text {b }}$	24 h	65	64
4	10h	4-(PhO) Ph	H	H	H	CHCl_{3}, rt 24 h	17	33	3 h	66	38
3d	10a	$N, N-\mathrm{DiMe}$	H	H	Me	CHCl_{3}, reflux 24 h	18	89	24 h	67	66
3d	10c	Ph	H	H	Me	CHCl_{3}, reflux 24 h	19	94	24 h	68	71
3d	10 f	4-(MeO) Ph	H	H	Me	CHCl_{3}, reflux 24 h	20	93	24 h	69	66
3 e	10a	$N, N-\mathrm{DiMe}$	H	Me	Me	CHCl_{3}, rt 24 h	21	86	24 h	70	70
3 e	10c	Ph	H	Me	Me	CHCl_{3}, rt 24 h	22	91	24 h	71	72
3 e	10 f	4-(MeO) Ph	H	Me	Me	CHCl_{3}, rt 24 h	23	93	24 h	72	66
3b	10a	$N, N-\mathrm{DiMe}$	Me	H	H	CHCl_{3}, rt 24 h	24	57	24 h	73	57
3b	10c	Ph	Me	H	H	CHCl_{3}, rt 24 h	25	93	24 h	74	61
3b	10 f	4-(MeO) Ph	Me	H	H	CHCl_{3}, rt 24 h	26	90	24 h	75	59
3 f	10a	$N, N-\mathrm{DiMe}$	Me	H	Me	CHCl_{3}, rt 24 h	27	67	24 h	76	56
3 f	10c	Ph	Me	H	Me	CHCl_{3}, rt 24 h	28	89	24 h	77	62
3 f	10 f	4-(MeO) Ph	Me	H	Me	CHCl_{3}, rt 24 h	29	84	24 h	78	61
5a	10c	Ph	Et	H	H	PhMe , reflux 24 h	30	36	24 h	79	44
5a	10d	4-EtPh	Et	H	H	PhMe , reflux 24 h	31	41	3 h	80	53
5a	10d	4-EtPh	Et	H	H	CHCl_{3}, reflux 24 h	31	70	-	-	-
5a	10 g	$4-(\mathrm{AcO}) \mathrm{Ph}$	Et	H	H	PhMe , reflux 24 h	$32^{\text {c }}$	31	24 h	$81{ }^{\text {c }}$	15
5a	10i	4-(HO)Ph	Et	H	H	PhMe , reflux 24 h	33	54	-	$-^{\text {d }}$	- ${ }^{\text {d }}$
5a	10j	4-ClPh	Et	H	H	PhMe , reflux 24 h	34	32	24 h	82	33
5a	10k	$4-\mathrm{BrPh}$	Et	H	H	PhMe , reflux 24 h	35	35	24 h	83	36
5a	101	$4-\mathrm{NO}_{2} \mathrm{Ph}$	Et	H	H	PhMe , reflux 24 h	36	45	24 h	84	28
5b	10c	Ph	Pentyl	H	H	PhMe , reflux 24 h	37	30	-	-	-
6	10c	Ph	Et	H	H	PhMe , reflux 24 h	38	41	-	-	-
4	10m	$\mathrm{AcOCH}_{2} \mathrm{CHPh}$	H	H	H	CHCl_{3}, reflux 24 h	39	-	24 h	85	46
3b	10m	$\mathrm{AcOCH}_{2} \mathrm{CHPh}$	Me	H	H	CHCl_{3}, reflux 24 h	40	-	24 h	86	27
3d	10m	$\mathrm{AcOCH}_{2} \mathrm{CHPh}$	H	H	Me	CHCl_{3}, reflux 24 h	41	-	24 h	87	44
3 c	10m	$\mathrm{AcOCH}_{2} \mathrm{CHPh}$	Me	Me	H	CHCl_{3}, reflux 24 h	42	-	24 h	88	29
3 f	10m	$\mathrm{AcOCH}_{2} \mathrm{CHPh}$	Me	H	Me	CHCl_{3}, reflux 24 h	43	-	24 h	89	26
3 g	10m	$\mathrm{AcOCH}_{2} \mathrm{CHPh}$	Me	Me	Me	CHCl_{3}, reflux 24 h	44	-	24 h	90	21
4	10n	$\mathrm{MeOCH}_{2} \mathrm{CHPh}$	H	H	H	CHCl_{3}, reflux 24 h	45	-	24 h	91	39
3b	10n	$\mathrm{MeOCH}_{2} \mathrm{CHPh}$	Me	H	H	CHCl_{3}, reflux 24 h	46	-	24 h	92	30
3 e	10n	$\mathrm{MeOCH}_{2} \mathrm{CHPh}$	H	Me	Me	CHCl_{3}, reflux 24 h	47	-	24 h	93	26
3d	10n	$\mathrm{MeOCH}_{2} \mathrm{CHPh}$	H	H	Me	CHCl_{3}, reflux 24 h	48	-	24 h	94	40
3c	10n	$\mathrm{MeOCH}_{2} \mathrm{CHPh}$	Me	Me	H	CHCl_{3}, reflux 24 h	49	-	24 h	95	32
3 f	10n	$\mathrm{MeOCH}_{2} \mathrm{CHPh}$	Me	H	Me	CHCl_{3}, reflux 24 h	50	-	24 h	96	29
3 g	10n	$\mathrm{MeOCH}_{2} \mathrm{CHPh}$	Me	Me	Me	CHCl_{3}, reflux 24 h	51	-	24 h	97	23

${ }^{a}$ Yields for chiral indoles are over two steps.
${ }^{\text {b }}$ Crude yields for adducts $\mathbf{1 1}(64 \%)$, $\mathbf{1 3}(92 \%)$, and $\mathbf{1 6}(90 \%)$ include double-addition type products detected by TLC but not isolated.
${ }^{\mathrm{c}}$ Product was deacetylated to $\mathbf{8 1}$ during the reaction or workup.
${ }^{\mathrm{d}}$ Only starting material 33 was recovered, but see note c above.

Scheme 4. Aromatization of Diels-Alder adducts.

Figure 2. Effect of endo- or exo-addition on the stereochemistry of Diels-Alder adducts.
detectable interaction between the $4 \alpha-\mathrm{H}$ proton and the 5-methyl group. Correspondingly, a strong NOE interaction was seen between the 4β-H proton and the 5-methyl group, whereas no detectable response was observed between the $4 \beta-\mathrm{H}$ and $5-\mathrm{H}$ protons, showing the 5 -methyl group to be in the β-orientation. The ${ }^{1} \mathrm{H}$ NMR integrations of 21-23 showed between a 13:1 and 54:1 molar ratio of major to minor product, a $93-98 \%$ diastereomeric excess. The predominant diastereomers had the sterically more congested configuration, with the 5-methyl group protruding from the same face as the maleimide.

The high diastereoselectivity of the formal 1,3hydride shift is further evidenced from products 52-59. These types of products were detected whenever unsubstituted vinylpyrrole 4 was used in Diels-Alder reactions with maleimides, where they were isolated and characterized in four reactions. Compound 56 was not completely separated from 52, although sufficient purity was obtained to accurately report ${ }^{1} \mathrm{H}$ NMR data. In several cases, these products were detected by TLC but not isolated, although their masses were included in determining the percent yield; hence, yields for products 11, 13, and $\mathbf{1 6}$ do not reflect the actual isolated yield. NOE studies of $\mathbf{5 5}$ and $\mathbf{5 9}$ verified the structure of products

Figure 3. Numbering scheme.

52-59, giving evidence of the same kind of stereochemistry as described earlier for the $5 \beta-\mathrm{Me}$ adducts 22 and 23 (Fig. 4).

For minor product 59, an NOE interaction was observed between the $8 \mathrm{~b} \alpha-\mathrm{H}$ proton and a geminal proton of the succinimide substituent, an interaction absent in major product 55. In 55, an interaction between the $8 \mathrm{~b} \alpha-\mathrm{H}$ and $4 \alpha-\mathrm{H}$ protons showed a syn-relationship. Multiple strong interactions were observed in compound 55 between the $4 \beta-\mathrm{H}$ proton and the succinimide protons, whereas no such interactions were observed with the $4 \alpha-\mathrm{H}$ proton, giving evidence that the succinimide is attached to the β-face in the major product. In compounds 52-59, the stereochemistry of the succinimidyl proton at the point of attachment was not determined. However, coupling constants and NOE interactions between the geminal protons of the succinimide and the succinimidyl proton at the point of attachment did allow determination of a probable syn- or anti-relationship. In compound 55, the ${ }^{1} \mathrm{H}$ NMR peaks of the $5 \alpha-\mathrm{H}$ proton

59

Figure 4. NOE experiments. *Numbers indicate \% enhancement.

Figure 5. Proposed mechanism for the formation of 52-59.
and the proton at the point of succinimide attachment overlapped too greatly to allow accurate measurement of NOE interactions.

When first detected, products $\mathbf{5 2 - 5 9}$ were assumed to be the result of ene-reactions between the Diels-Alder adduct and the maleimide, as there are several reports of ene-products formed between Diels-Alder adducts and their corresponding dienophiles [27]. However, after determining the stereochemistry at C5, it was realized that an ene reaction could not adequately explain the formation of both epimers. Although an ene reaction could justify the formation of minor products $\mathbf{5 6} \mathbf{- 5 9}$, the tight transition state required [28] makes the ene reaction an impossible route toward major products 52-55 (Fig. 5). Because the more sterically congested epimers 52-55 were the predominant products, thermodynamic equilibration of the feasibly ene-reaction-formed 56-59 is also highly unlikely.

In light of the diastereoselective rearrangement at C5 noted in this work and in our earlier in situ Diels-Alder reaction work $[4,5]$, it was realized that our mechanistic explanation for formation of the rearranged adducts could also explain the formation of 52-59. A Michaeladdition of the unrearranged adduct to the maleimide would result in 5-succinimide-substituted adducts. When a proton approaches the molecule to cause the formal 1,3-hydride shift, an addition from the least sterically congested face (the α-face in the Figures) would pre-
dominate and would result in products 52-55, with a smaller amount of hydrogen delivery occurring from the more sterically occluded face to give minor products 56-59. The presence of the succinimide substituent at C5 may cause the steric environment of the α-face to be more similar to the β-face than does a 5-methyl group; this would explain the 3:1-5:1 ratios of products 52-59 ($75-83 \% \mathrm{de}$) as contrasted with the higher diastereomeric excess observed in 5-methyl products 21-23 (93$98 \%$ de).

Aromatization of Diels-Alder adducts. Diels-Alder adducts 11-32, 34-36, and 39-51 were dehydrogenated using activated MnO_{2}, giving the corresponding indoles 60-84 in 15-72\% yield and giving chiral indoles 85-97 with $21-46 \%$ yield over two steps (Scheme 4, Table 1). Using manganese sulfate with potassium permanganate [29] to make the activated MnO_{2} gave consistent and moderate-yielding aromatizations. Some restrictions to this technique apply, as when aromatization of hydroxyl-adduct 33 was attempted, only starting material was obtained. Competition for adsorption on the oxide surface of the activated MnO_{2} from the phenol group of $\mathbf{3 3}$ may have partially deactivated the reagent. When MnO_{2} treatment of acetoxy-adduct 32 was conducted, the hydroxy-indole $\mathbf{8 1}$ was the exclusive product isolated. When oxidation occurs, water can be produced, but deacetylation appears to be unprecedented under these oxidative conditions; therefore, the aromatized
product was more likely deacetylated on silica gel during chromatography, giving 81. Aromatization and purification of chiral adducts 39-44 gave indoles 85-90 with no deacetylation.

Biological activity. While participating in the Developmental Therapeutics Program at the National Cancer Institute (NCI), we submitted 11 compounds to the NCI for a one-dose 60 human tumor cell line prescreen: compounds $12,14,17,30,32,33,61,63,66$, and 79. Of these, two compounds, 63 and 66 , were judged by the NCI to have sufficient activity to justify screening with 60 human tumor cell lines at five concentrations with 10 -fold dilutions, from 1×10^{-4} to $1 \times 10^{-8} \mathrm{M}$. Both of these compounds were found to have high levels of activity against many of the 60 different cell lines tested. Compound 63 was most active against non-small-cell lung cancer HOP-92 and melanoma cell lines SK-MEL-5 and LOX IMVI with an IC_{50} of 322, 412, and $462 \mathrm{ng} / \mathrm{mL}$, respectively. Compound 66 was most active against breast cancer HS 578T, melanoma UACC-257, and leukemia RPMI-8226, with an IC_{50} of $3.5,34$, and $230 \mathrm{ng} / \mathrm{mL}$, respectively.

CONCLUSIONS

Variously substituted 2-vinylpyrroles undergo endoaddition Diels-Alder additions with maleimides, followed by a highly diastereoselective ($93-98 \%$ de) rearrangement to tetrahydroindoles in moderate to excellent yield. Treatment with activated MnO_{2} in refluxing toluene gives the corresponding indole aromatized products in moderate to good yield. This highly convergent methodology for formation of indoles is flexible and the starting materials are conveniently prepared.

EXPERIMENTAL

General. Solvents and reagents were purchased and used as received. Flash chromatography was performed using 230-450 mesh silica gel. TLC analyses were performed on plasticbacked plates precoated with $0.2-\mathrm{mm}$ silica with F_{254} indicator. Infrared spectra were recorded on a 4000 FTIR spectrometer; only the most intense and/or diagnostic peaks are reported. High-resolution mass spectra were recorded with a time-offlight instrument using electrospray ionization with PEG as an internal calibrant. For NMR spectra, chemical shifts (δ) were referenced to the solvent. ${ }^{13} \mathrm{C}$ NMR spectra were proton decoupled. Melting points are uncalibrated. Elemental analyses were performed by M-H-W Laboratories, Phoenix, AZ. Petroleum ether refers to the fraction boiling at $35-60^{\circ} \mathrm{C}$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR analysis. In the ${ }^{1} \mathrm{H}$ NMR spectra of adducts $\mathbf{1 1}-$ 38, the $8 \mathrm{~b} \alpha-\mathrm{H}$ proton often appears as a doublet of doublet of doublets in 5-unsubstituted adducts; COSY experiments indicate that the $8 \mathrm{~b} \alpha-\mathrm{H}$ proton is coupled not only to the $3 \mathrm{a} \alpha-\mathrm{H}$ proton but also to the 5 -bond-distant $5-\mathrm{H}$ protons with a cou-
pling constant of about 1.5 Hz [10,30]. In 5-methyl adducts, the $3 \mathrm{a} \alpha-\mathrm{H}$ proton was sometimes observed to couple to the 5α H proton at $0.6-0.9 \mathrm{~Hz}$. Additionally, in 4-alkyl adducts, the $3 \mathrm{a} \alpha-\mathrm{H}$ proton was coupled to the $5 \alpha-\mathrm{H}$ proton at $\sim 1.0 \mathrm{~Hz}$. For indoles $\mathbf{6 0 - 9 7}$, the $8-\mathrm{H}$ proton and the $5-\mathrm{H}$ proton were consistently coupled at about 1.0 Hz [31].

General methods for the preparation of vinylpyrroles. Method I. Sodium ethoxide $(0.125 \mathrm{~mol}, 2.5$ equiv, made freshly from sodium ($2.87 \mathrm{~g}, 0.125 \mathrm{~mol}, 2.5$ equiv) and EtOH followed by evaporation using a rotating evaporator) was suspended with the appropriate alkyltriphenylphosphonium bromide ($0.1 \mathrm{~mol}, 2$ equiv) in THF (50 mL) $[18,19]$. The mixture was stirred at rt under nitrogen for 3 h . Then, a solution of the appropriate pyrrole-2-carboxaldehyde $\mathbf{2 a}$ or $\mathbf{2 b}$ or 2-acetylpyrrole $\mathbf{2 c}$ or $\mathbf{2 d}(0.05 \mathrm{~mol})$ in THF $(20 \mathrm{~mL})$ was added over 1 min, and the mixture was stirred under reflux for 15 h . The solvent was removed using a rotating evaporator, the residue was suspended in dichloromethane and filtered, and the filter cake was washed with dichloromethane $(3 \times 50 \mathrm{~mL})$. The filtrate was washed with saturated $\mathrm{NaHSO}_{3}(50 \mathrm{~mL})$, saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}(50 \mathrm{~mL})$, and brine $(50 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed using a rotating evaporator and the crude product was vacuum-distilled, giving the appropriate pure 2 -vinylpyrrole (with the exception of $\mathbf{4}$, see later) at comparable 60% yield $[18,19]$. When method I was used to generate vinylpyrrole 4,7 was found to be an unwanted byproduct in an $\sim 1: 1$ molar ratio to the desired product. This mixture was used without further purification in subsequent Diels-Alder reactions.

Method II. Potassium t-butoxide ($14.76 \mathrm{~g}, 0.132 \mathrm{~mol}, 1.25$ equiv) was added slowly to methyltriphenylphosphonium bromide ($46.98 \mathrm{~g}, 0.132 \mathrm{~mol}, 1.25$ equiv) in THF (100 mL) at $0^{\circ} \mathrm{C}$. Formation of the bright yellow color characteristic of the ylide was observed immediately. The mixture was stirred at rt under nitrogen for 30 min and then cooled to $0^{\circ} \mathrm{C}$. A solution of the pyrrole $2 \mathbf{a}(10.00 \mathrm{~g}, 0.105 \mathrm{mmol})$ in THF (20 mL) was added over 5 min , with stirring, and refluxed for 30 min until TLC analysis indicated the reaction was complete. The mixture was allowed to cool to rt and filtered. The filter cake was washed with diethyl ether $(4 \times 25 \mathrm{~mL})$. The filtrate was washed with saturated $\mathrm{NaHSO}_{3}(50 \mathrm{~mL})$, saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ $(50 \mathrm{~mL})$, and brine $(50 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvents were removed using a rotating evaporator and the residue was vacuum-distilled, giving 4 as a colorless liquid $(7.66 \mathrm{~g}, 78 \%)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data matched the values in the literature $[18,19]$.

For Diels-Alder reactions, vinylpyrroles $\mathbf{5 a}$ and $\mathbf{5 b}$ were synthesized using Corey's procedure for the Wittig reaction [21], and method I was used to synthesize vinylpyrroles 3a-g. However, for purposes of characterization $\mathbf{3 a} \mathbf{- c}, \mathbf{3 e - f}$, and $\mathbf{5 b}$ were synthesized using method II.

2-(2-Propenyl)-1H-pyrrole (3a). Method II with 2c (3.16 g, 0.029 mol) and distillation at $37^{\circ} \mathrm{C} / 0.04 \mathrm{~mm} \mathrm{Hg}$ gave 3a (436 $\mathrm{mg}, 14 \%$) as a white waxy solid [17a]: mp $71-73^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 8.32$ (bs, $\left.1 \mathrm{H}, 1-\mathrm{H}\right), 6.82$ (ddd, $J=2.8$, $2.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 6.37$ (dddd, $J=3.1,3.1,1.7,1.3 \mathrm{~Hz}$, $1 \mathrm{H}, 3-\mathrm{H}$), 6.32 (dddd, $J=3.3,2.6,2.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$), $5.09-5.11\left(\mathrm{~m}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right.$ cis to pyrrole), 4.91-4.93(m,1H, 1'-H trans to pyrrole), 2.17 (ddd, $J=1.6,0.8,0.8 \mathrm{~Hz}, 3 \mathrm{H}, 3^{\prime}-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 135.1,133.2,118.8,109.5$, $107.0,105.7,20.8$; IR (thin film, cm^{-1}) $3450(\mathrm{bs}), 3400(\mathrm{~s})$,

2969(s), 2925(m), 2840(w), 1634(m), 1597(m), 1557(w), $1499(\mathrm{w}), \quad 1470(\mathrm{~m}), \quad 1403(\mathrm{~m}), \quad 1235(\mathrm{~m}), \quad 1110(\mathrm{w}), \quad 1035(\mathrm{~m})$; HRMS $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd. for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}: 108.0808$, found 108.0815.

2-(1-Propenyl)-1H-pyrrole (3b). Method II with 2a (2.66 g , $0.028 \mathrm{~mol})$ and distillation at $35.5^{\circ} \mathrm{C} / 0.05 \mathrm{~mm} \mathrm{Hg}$ gave 3b ($2.32 \mathrm{~g}, 77 \%$) as a white solid [17b,18a]: 1.0:3.9 E:Z; mp 27$28^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) $8.10(\mathrm{bs}, 1 \mathrm{H}, 1-\mathrm{H}$), 6.82 (ddd, $J=2.6,2.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 5 \mathrm{maj}-\mathrm{H}), 6.74$ (ddd, $J=2.7$, 2.7, $1.4 \mathrm{~Hz}, 1 \mathrm{H}, 5 \mathrm{~min}-\mathrm{H}), 6.22-6.42$ (m, 3H, 3-H, 4-H, 1'-H), $5.80-5.93\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime} \mathrm{min}-\mathrm{H}\right), 5.61-5.74\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime} \mathrm{maj}-\mathrm{H}\right)$, 2.03-2.07 (m, 3H, 3^{\prime} maj-H), 1.93-1.97 (m, 3H, $3^{\prime} \mathrm{min}-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 130.4,122.2,121.8,120.9,120.4$, $118.0,117.8,109.6,109.4,109.0,106.6,18.5,15.2$; IR (thin film, cm^{-1}) 3469(s), 3396(bs), 3107(w), 3024(m), 2963(m), 2950(m), 2935(m), 2857(w), 1642(m), 1603(w), 1546(w), 1459(m), 1409(w), 1366(m), 1294(w), 1278(w), 1216(w), 1118(m), 1098(m), 1032(m), 957(w), 800(s); HRMS m/z (M + H^{+}) calcd. 108.0808, found 108.0802. Anal. Calcd. for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}$: C, 78.46; H, 8.47; N, 13.07. Found: C, 78.28; H, 8.66; N, 12.94 .
2-(2-But-2-enyl)-1H-pyrrole (3c). Method II with 2c (3.16 g, 0.029 mol) and distillation at $43^{\circ} \mathrm{C} / 0.04 \mathrm{~mm} \mathrm{Hg}$ gave 3c ($922 \mathrm{mg}, 26 \%$) as a colorless liquid: 2.8:1.0 E:Z; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) 8.32 (bs, $1 \mathrm{H}, 1-\mathrm{H}$), 6.87 (ddd, $J=2.4$, $2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}, 5 \mathrm{maj}-\mathrm{H}$), 6.77 (ddd, $J=2.2,2.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}$, 5min-H), 6.36-6.40 (m, 2H, 3maj-H, 4maj-H), 6.27-6.31 (m, $2 \mathrm{H}, 3 \mathrm{~min}-\mathrm{H}, 4 \mathrm{~min}-\mathrm{H}$), $5.67-5.76\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime} \mathrm{min}-\mathrm{H}\right), 5.50-5.59$ (m, 1H, 3^{\prime} maj-H), 2.12-2.15 (m, 3H, 1'maj-H), 2.05-2.07 (m, $3 \mathrm{H}, 1^{\prime}$ min-H), 1.97-2.01 (m, 3H, 4'maj-H), 1.86-1.90 (m, 3H, $\left.4^{\prime} \mathrm{min}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 134.9,132.4,127.6$, 126.9, 119.5, 117.8, 117.5, 116.0, 109.1, 109.0, 108.4, 105.2, 23.1, 15.4, 14.4, 13.7; IR (thin film, cm^{-1}) $3481(\mathrm{~s}), 3419(\mathrm{bm})$, 2973(m), 2922(m), 2862(m), 1643(w), 1551(w), 1452(m), 1403(m), 1378(m), 1353(w), 1119(m), 1090(m), 1068(w), 1036(m), 806(m), 791(m); HRMS m/z (M + H ${ }^{+}$) calcd. 122.0964, found 122.0965. Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}$: C, 79.29; H, 9.15; N, 11.56. Found: C, 79.22; H, 8.96; N, 11.33.
N-Methyl-2-(2-propenyl)-1H-pyrrole (3e). Method II with $2 d(3.57 \mathrm{~g}, 0.029 \mathrm{~mol})$ and distillation at $31.5^{\circ} \mathrm{C} / 0.04 \mathrm{~mm} \mathrm{Hg}$ gave $3 \mathrm{e}(1.62 \mathrm{~g}, 46 \%)$ as a colorless liquid $[7 \mathrm{a}, 17 \mathrm{c}, 17 \mathrm{e}, 17 \mathrm{f}]$: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) 6.77 (ddd, $J=2.7,1.4,1.4$ $\mathrm{Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 6.37$ (ddd, $J=3.7,1.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 6.30$ (ddd, $J=3.8,2.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 5.26(\mathrm{dq}, J=3.0,1.5$ $\mathrm{Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}$ cis to pyrrole), 5.17 (dq, $J=3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-$ H trans to pyrrole), $3.85\left(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}, 1-\mathrm{CH}_{3}\right), 2.28$ (dddd, $J=1.7,1.7,1.0,0.9 \mathrm{~Hz}, 3 \mathrm{H}, 3^{\prime}-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 135.9,134.7,124.7,111.6,108.8,107.3$, 36.3, 24.1; IR (thin film, cm^{-1}) 3104(m), 2974(s), 2952(s), 2921(s), 2881(m), 2806(w), 2726(w), 1794(w), 1701(w), 1626(s), 1478(s), 1449(m), 1434(s), 1413(m), 1374(m), 1363(m), 1313(s), 1260(m), 1224(w), 1094(m), 1062(w), 997(w), 789(m), 605(m); HRMS m/z (M + H ${ }^{+}$) calcd. 122.0964, found 122.0959. Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}: \mathrm{C}, 79.29$; H, 9.15; N, 11.56. Found: C, 79.54; H, 8.92; N, 11.54.
N-Methyl-2-(1-propenyl)-1H-pyrrole (3f). Method II with 2b ($3.50 \mathrm{~g}, 0.032 \mathrm{~mol}$) and distillation at $32.5^{\circ} \mathrm{C} / 0.04 \mathrm{~mm} \mathrm{Hg}$ gave $\mathbf{3 f}(2.66 \mathrm{~g}, 68 \%)$ as a colorless liquid $[17 \mathrm{~d}, 17 \mathrm{~g}, 17 \mathrm{i}]$: 1.0:1.8 E:Z; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, δ) 6.72 (ddd, $J=$ $2.9,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}, 5 \mathrm{maj}-\mathrm{H}$), 6.66 (ddd, $J=2.4,2.0,2.0 \mathrm{~Hz}$, $1 \mathrm{H}, 5 \mathrm{~min}-\mathrm{H}), 6.36-6.44(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}, 4-\mathrm{H}), 6.29-6.32(\mathrm{~m}, 1 \mathrm{H}$,

1'maj-H), 6.20-6.23 (m, 1H, 5^{\prime} min-H), 6.06-6.19 (m, 1H, $\left.2^{\prime} \mathrm{min}-\mathrm{H}\right), 5.76-5.88\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime} \mathrm{maj}-\mathrm{H}\right), 3.69(\mathrm{~s}, 3 \mathrm{H}, 1 \mathrm{~min}-$ CH_{3}), 3.69 (s, $3 \mathrm{H}, 1 \mathrm{maj}-\mathrm{CH}_{3}$), $2.04-2.08(\mathrm{~m}, 3 \mathrm{H}, 3$ 'maj- H), 1.98-2.02 (m, 3H, 2^{\prime} maj-H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) $132.4,130.4,124.3,124.1,122.24,122.16,120.1,118.6$, $109.6,107.8,107.6,105.3,34.1,18.9,15.3$; IR (thin film, $\left.\mathrm{cm}^{-1}\right) 3103(\mathrm{~m}), 3018(\mathrm{~m}), 2967(\mathrm{~s}), 2937(\mathrm{~s}), 2917(\mathrm{~s}), 2860(\mathrm{~m})$, 1698(w), 1640(w), 1479(s), 1450(m), 1412(m), 1376(m), 1356(w), $1342(\mathrm{w}), \quad 1302(\mathrm{~m}), \quad 1292(\mathrm{~s}), \quad 1241(\mathrm{w}), \quad 1228(\mathrm{w})$, 1089(m), 1064(w), 1033(w), 998(w), 832(w), 781(m), 649(s), 608(s); HRMS $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd. 122.0964, found 122.0956. Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}: \mathrm{C}, 79.29 ; \mathrm{H}, 9.15 ; \mathrm{N}$, 11.56. Found: C, 79.50; H, 8.93; N, 11.80.

2-(2-But-2-enyl)-N-methyl-1H-pyrrole (3g). Method II with $2 d(3.50 \mathrm{~g}, 0.032 \mathrm{~mol})$ and distillation at $31.5^{\circ} \mathrm{C} / 0.04 \mathrm{~mm} \mathrm{Hg}$ gave $3 \mathrm{~g}(1.01 \mathrm{~g}, 23 \%)$ as a colorless liquid: 1.0:1.5 $\mathrm{E}: \mathrm{Z} ;{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 6.70$ (ddd, $J=2.7,1.8,1.8 \mathrm{~Hz}$, $1 \mathrm{H}, 5 \mathrm{maj}-\mathrm{H}$), 6.64 (ddd, $J=2.7,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, 5 \mathrm{~min}-\mathrm{H}$), 6.24 (ddd, $J=3.5,2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{maj}-\mathrm{H}), 6.18$ (ddd, $J=$ $3.6,2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{~min}-\mathrm{H}$), 6.10 (dddd, $J=3.9,3.9,2.0$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}, 4 \mathrm{~min}-\mathrm{H}$), 6.02 (dddd, $J=3.8,3.8,2.0,2.0 \mathrm{~Hz}$, $1 \mathrm{H}, 4 \mathrm{maj}-\mathrm{H}), 5.74-5.84\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime}\right.$ maj-H), 5.60-5.69 (m, 1H, $\left.3^{\prime} \mathrm{min}-\mathrm{H}\right), 3.68\left(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H}, 1 \mathrm{~min}-\mathrm{CH}_{3}\right), 3.57(\mathrm{~d}, J=$ $1.8 \mathrm{~Hz}, 3 \mathrm{H}, 1 \mathrm{maj}-\mathrm{CH}_{3}$), 2.04-2.06 (m, 3H, $\left.1^{\prime}-\mathrm{H}\right), 1.85-1.90$ (m, 3H, 4^{\prime} min-H), $1.59-1.64$ (m, 3H, 4^{\prime} maj-H); ${ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, §) 137.7, 133.6, 129.1, 128.1, 126.3, 124.1, 122.7, 121.4, 107.4, 107.1, 106.8, 33.3, 34.0, 25.5, 17.3, 15.5, 14.2; IR (thin film, cm^{-1}) 3106(m), 3026(m), 2943(m), 2918(m), 2884(m), 2857(w), 2810(w), 1703(w), 1638(m), 1484(s), 1451(m), 1367(w), 1305(s), 1261(w), 1228(w), 1091(m), 1058(w), 1009(w), 954(m), 789(m), 648(s), 605(m); HRMS $m / z\left(M+\mathrm{H}^{+}\right)$calcd. for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}$: 136.1121, found 136.1124.

2-Ethenyl-1H-pyrrole (4). Method II with 2a (10.00 g, 0.105 mol) and distillation at $30^{\circ} \mathrm{C} / 0.04 \mathrm{~mm} \mathrm{Hg}$ gave $4(7.66$ $\mathrm{g}, 78 \%$) as a colorless liquid $[18,19]$; the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data matched the literature values $[18,19]$. Anal. Calcd. for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}$: C, $77.38 ; \mathrm{H}, 7.58$; N, 15.04. Found: C, 77.17; H, 7.67; N, 14.83 .

2-(1-Heptenyl)-1H-pyrrole (5b). Method II with 2a (2.91 g , $0.031 \mathrm{~mol})$ and distillation at $68^{\circ} \mathrm{C} / 0.04 \mathrm{~mm} \mathrm{Hg}$ gave $\mathbf{5 b}(4.40$ $\mathrm{g}, 81 \%$) as a colorless liquid: 1.0:9.0 E:Z; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 8.10(\mathrm{bs}, 1 \mathrm{H}, 1-\mathrm{H}), 6.81$ (ddd, $J=2.3,2.3$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}, 5 \mathrm{maj}-\mathrm{H}$), 6.74 (ddd, $J=2.6,2.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}$, $5 \mathrm{~min}-\mathrm{H}), 6.21-6.37$ (m, 3H, 3-H, 4-H, 1'-H), 5.85 (ddd, $J=$ $16.1,7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime} \min -\mathrm{H}$), 5.53 (ddd, $J=12.8,6.8,5.8$ $\mathrm{Hz}, 1 \mathrm{H}, 2^{\prime}$ maj-H), 2.45 (ddt, $J=7.3,7.2,1.8 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}$ majH), 2.25 (dt, $J=7.2,7.1,1.5 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime} \mathrm{min}-\mathrm{H}$), 1.34-1.65 $\left(\mathrm{m}, 6 \mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 1.01\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, 7^{\prime}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) 134.0, 133.7, 130.3, 128.9, 128.8 , 128.7, 128.6, 126.3, 120.5, 119.0, 117.8, 117.7, 109.6, 109.4, $108.9,106.7,32.9,31.8,31.5,29.4,29.4,22.7,14.2$; IR (thin film, cm^{-1}) 3469(s), 3392(bs), 3105(m), 3014(m), 2957(s), 2926(s), 2857(s), 1712(w), 1639(m), 1545(w), 1460(m), $1434(\mathrm{~m}), \quad 1412(\mathrm{~m}), \quad 1379(\mathrm{~m}), \quad 1293(\mathrm{w}), 1280(\mathrm{w}), 1212(\mathrm{w})$, 1182(w), 1118(m), 1095(m), 1033(m), 955(m), 799(m), 949(m); HRMS $m / z\left(M+\mathrm{H}^{+}\right)$calcd. 164.1434, found 164.1434. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}: \mathrm{C}, 80.93 ; \mathrm{H}, 10.50 ; \mathrm{N}$, 8.58. Found: C, 81.07; H, 10.32; N, 8.74.

2-(1-Ethoxyethyl)-N-methyl-1H-pyrrole (7). A 1:1 molar mixture of 4 and 7 , prepared using method I, was left in a
refrigerator for 6 months, giving large colorless crystals of 7 . The crystals were removed and the liquid 4 was washed off using ice-cold petroleum ether, giving colorless crystals: mp $26.5-28.5^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 8.39$ (bs, $1 \mathrm{H}, 1-$ H), 6.78 (ddd, $J=2.6,2.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 6.16$ (ddd, $J=$ $3.3,2.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$), 6.08 (ddd, $J=3.5,2.6,1.5 \mathrm{~Hz}$, $1 \mathrm{H}, 3-\mathrm{H}), 4.55\left(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 3.44(\mathrm{dq}, J=12.0$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 3.40 (dq, overlapped, $J=11.7,7.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.51\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 1.19(\mathrm{dd}$, $\left.J=6.9,7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, §) 133.7 (C2), 117.5 (C5), 107.9 (C4), 106.0 (C3), 71.1 ($\left.\mathrm{Cl}^{\prime}\right)$, $63.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 21.7\left(\mathrm{C}^{\prime}\right), 15.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; IR (film, $\left.\mathrm{cm}^{-1}\right) \quad 3464(\mathrm{~m}), \quad 3322(\mathrm{w}), \quad 3054(\mathrm{~m}), \quad 2980(\mathrm{~m}), \quad 2933(\mathrm{w})$, 2873(w), 1446(w), 1422(w), 1373(w), 1325(w), 1266(s), 1151(w), 1086(m), 1028(w), 1006(w), 896(w), 796(w), 739(s), 707(s). X-ray data for 7 in CIF format are available in the Supporting Information.

General method for the synthesis of chiral maleimides. The primary amine (0.070 mol) dissolved in a large excess of diethyl ether (100 mL) was added over 20 min using a dropping funnel to a $2-\mathrm{L}$ flask containing maleic anhydride ($6.85 \mathrm{~g}, 0.070 \mathrm{~mol}, 1$ equiv) dissolved in diethyl ether $(500 \mathrm{~mL})$ [23]. Throughout the addition, the mixture turned into a thick off-white suspension. The suspension was concentrated to half-volume, cooled in the freezer, and vacuum-filtered, giving the crude acid as a thick paste. Acetic anhydride $(300 \mathrm{~mL})$ and sodium acetate $(2.87 \mathrm{~g}, 0.035 \mathrm{~mol}, 0.5$ equiv) were added to the crude acid and the mixture was heated to $100^{\circ} \mathrm{C}$ in a boiling water bath for 2 h . The mixture was then cooled to rt, diluted with water (200 mL), and portions of NaHCO_{3} were added slowly with vigorous stirring until the acetic acid was nearly neutralized. The solution was extracted with ether ($3 \times 200 \mathrm{~mL}$), and the organic extracts were washed with saturated NaHCO_{3} until neutral, then washed with water (100 mL) and brine (100 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed using a rotating evaporator and the product was purified using flash chromatography on silica gel using ethyl acetate/hexanes to give the pure chiral maleimide in moderate yield ($\sim 50 \%$).
(+)-(R)-2-(2,5-Dioxo-1H-pyrrol-1-yl)-2-phenylethyl acetate $(\mathbf{1 0 m})$. The general method gave $\mathbf{1 0 m}(8.167 \mathrm{~g}, 45 \%)$ as a light-red oil: $[\alpha]^{23}{ }_{\mathrm{D}}+1.7$ (c 10.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 7.43-7.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.33-7.40(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{Ph}), 6.71$ (s, 2H, vinyl-H), 5.43 (dd, $J=10.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-$ H), 4.99 (dd, $\left.J=11.1,10.5 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 4.71$ (dd, $J=$ $\left.11.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 2.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 170.7,170.6,135.9,134.3,128.9,128.6$, $128.0,62.4,53.6,20.8$; IR (film, cm^{-1}) $3465(\mathrm{~m}), 3101(\mathrm{~m})$, 2950(w), 1743(s), 1713(s), 1399(s), 1370(s), 1232(s), 1163(m), $1043(\mathrm{~m}), 828(\mathrm{~m}), 696(\mathrm{~s})$; HRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{4}: 282.0738$, found 282.0740.
(+)-(R)-1-(2-Methoxy-1-phenylethyl)-1H-pyrrole-2,5-dione (10n). The general method gave $10 \mathrm{n}(7.608 \mathrm{~g}, 47 \%)$ as white crystals: mp $55-56^{\circ} \mathrm{C} ;[\alpha]^{23}{ }_{\mathrm{D}}+22.5$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, 反) $7.41-7.45(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.30-7.38$ (m, $3 \mathrm{H}, \mathrm{Ph}), 6.68(\mathrm{~s}, 2 \mathrm{H}$, vinyl-H), $5.38(\mathrm{dd}, J=10.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.1^{\prime}-\mathrm{H}\right), 4.46\left(\mathrm{dd}, J=11.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 3.82(\mathrm{dd}, J=$ $\left.10.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 3.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, δ) $171.0,137.0,134.2,128.8,128.3,128.0$, $70.8,58.8,54.3$; IR (film, cm^{-1}) 3460(bm), 3095(m), 2915(m), $2810(\mathrm{w}), \quad 1706(\mathrm{~s}), \quad 1400(\mathrm{~m}), \quad 1368(\mathrm{~m}), \quad 1154(\mathrm{w}), \quad 1110(\mathrm{~m})$,

826(m), 696(s); HRMS m/z $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{3}$: 254.0783, found 254.0783.

General method for Diels-Alder reactions. A mixture of the vinylpyrrole ($0.0050 \mathrm{~mol}, 1.1$ equiv) and the maleimide $(0.0045 \mathrm{~mol})$ (1) in chloroform (20 mL) was stirred at rt for 24 h and, if TLC analysis indicated maleimide remaining, the mixture was also refluxed for 24 h (method A) or (2) in toluene (20 mL) was refluxed for 24 h (method B). The solvent was removed using a rotating evaporator. The crude adduct was purified with flash chromatography or MPLC with ethyl acetate/hexanes as eluent, except in the case of chiral adducts, which were used without further purification in the next step.

General method for the dehydrogenation of Diels-Alder adducts. A mixture of the adduct (3.76 mmol) and activated MnO_{2} [29] ($18.8 \mathrm{mmol}, 5$ equiv) in toluene (30 mL) was refluxed for $2-3 \mathrm{~h}$ until the reaction was complete, as indicated by TLC (method C), or refluxed for 24 h (method D). For dehydrogenation of chiral adducts, the crude Diels-Alder reaction product was placed in toluene (30 mL) along with activated MnO_{2} (5 equiv) and refluxed for 24 h (method E). The mixture was cooled to rt and filtered through a fine glass frit. The insoluble manganese salts were washed with several portions of dichloromethane until the washings ran clear (5×20 mL), and the combined organic filtrate and washings were evaporated to dryness using a rotating evaporator. Flash chromatography or MPLC with ethyl acetate/hexanes as eluent provided the desired product in good yields.

2-Dimethylamino-3a $, 4,5,8 b \alpha$-tetrahydro-2H,6H-pyrrolo[3,
4-elindole-1,3-dione (11). Method A with vinylpyrrole 4 and maleimide 10a gave 11 ($597 \mathrm{mg}, 64 \%$ crude yield, including contamination from double-addition type products, detected by TLC; the crude adduct was recrystallized from methylene chloride/petroleum ether, giving the pure compound, but the isolated yield is not available) as a light-brown powder: mp $56-57^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) 8.02 (bs, $1 \mathrm{H}, 6-\mathrm{H}$), 6.68 (dd, $J=2.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.37$ (dd, $J=2.9,2.9 \mathrm{~Hz}$, $1 \mathrm{H}, 8-\mathrm{H}$), 3.89 (ddd, $J=8.1,1.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha-\mathrm{H}$), 3.18 (ddd, $J=7.8,5.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a} \alpha-\mathrm{H}), 2.84\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $2.57-2.65(\mathrm{~m}, 2 \mathrm{H}, 5 \alpha-\mathrm{H}$ and $5 \beta-\mathrm{H}), 2.34$ (dddd, $J=13.6,5.1$, $5.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}, 4 \beta-\mathrm{H}$), 2.00 (dddd, $J=13.7,8.6,6.3,5.1 \mathrm{~Hz}$, $1 \mathrm{H}, 4 \alpha-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) 177.6, 176.7, 127.1, 117.2, 109.9, 107.7, 44.0, 38.8, 38.7, 22.2, 19.5; IR (film, cm^{-1}) 3361(bs), 2930(m), 1777(w), 1711(s), 1448(w), 1369(m), 1200(m), 1147(m), 719(w); HRMS m/z (M + Na ${ }^{+}$) calcd. 256.1057, found 256.1057. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 61.79; H, 6.48; N, 18.01. Found: C, 61.59; H, 6.32; N, 17.90.

2-Benzyl-3ax,4,5,8b α-tetrahydro-2H,6H-pyrrolo[3,4-e]indole-1,3-dione (12). Method A with vinylpyrrole 4 and maleimide 10b gave 12 ($258 \mathrm{mg}, 23 \%$) as a colorless oil; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 7.98(\mathrm{bs}, 1 \mathrm{H}, 6-\mathrm{H}), 7.24-7.29(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph})$, 6.68 (dd, $J=2.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.37$ (dd, $J=2.7,2.7 \mathrm{~Hz}$, $1 \mathrm{H}, 8-\mathrm{H}), 4.64\left(\mathrm{AA}^{\prime} \mathrm{d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}\right), 4.58\left(\mathrm{AA}^{\prime} \mathrm{d}\right.$, $J=14.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}), 3.98$ (ddd, $J=8.1,1.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, $8 \mathrm{~b} \alpha-\mathrm{H}$), 3.24 (ddd, $J=7.8,5.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a} \alpha-\mathrm{H}), 2.61$ (dddd, $J=16.0,5.3,5.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 5 \beta-\mathrm{H}), 2.51$ (dddd, $J=$ $15.4,9.9,5.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 5 \alpha-\mathrm{H}$), 2.37 (dddd, $J=13.5,4.8$, $4.8,4.8,1 \mathrm{H}, 4 \beta-\mathrm{H}$), 1.99 (dddd, $J=13.7,9.8,5.5,5.3 \mathrm{~Hz}$, $1 \mathrm{H}, 4 \alpha-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, 反) 179.0, 178.0, 136.0, 128.7, 128.4, 127.8, 127.2, 117.2, 110.4, 107.6, 42.3, $40.4,40.1,22.2,19.6$; IR $\left(\mathrm{KBr}^{2} \mathrm{~cm}^{-1}\right) 3450 \mathrm{~s}, 3100 \mathrm{w}, 2924 \mathrm{~m}$,

2980w, 1701s; HRMS $m / z\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. 303.1105, found 303.1093. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $72.84 ; \mathrm{H}, 5.75$; N , 9.99. Found: C, 72.92; H, 5.75; N, 9.43.

2-Phenyl-3ax,4,5,8b α-tetrahydro-2H,6H-pyrrolo[3,4-e]indole-1,3-dione (13). Method A with vinylpyrrole 4 and maleimide 10c gave $\mathbf{1 3}$ ($980 \mathrm{mg}, 92 \%$ crude yield, including contamination from double-addition type products, detected by TLC; the crude adduct was recrystallized from methylene chloride/petroleum ether, giving the pure compound, but the isolated yield is not available) as a light-brown powder: mp $155-156{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 7.95$ (bs, 1H, 6-H), 7.41-7.47 (m, 2H, Ph), 7.33-7.39 (m, 1H, Ph), 7.23-7.28 (m, 2H, Ph), 6.70 (dd, $J=2.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.41$ (dd, $J=2.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}$, $8-\mathrm{H}), 4.15$ (ddd, $J=8.1,1.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha-\mathrm{H}$), 3.45 (ddd, $J=8.1,5.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a} \alpha-\mathrm{H}), 2.63-2.67(\mathrm{~m}, 2 \mathrm{H}, 5 \alpha-\mathrm{H}$ and $5 \beta-\mathrm{H}$), 2.53 (dddd, $J=13.6,4.5,4.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}, 4 \beta-\mathrm{H}$), 2.06 (dddd, $J=13.4,8.3,7.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}, 4 \alpha-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 178.3,177.3,132.1,129.1,128.4,127.3$, $126.4,117.3,110.2,107.7,40.5,40.4,22.0,19.4$; IR (film, cm^{-1}) $\quad 3374(\mathrm{bs}), \quad 2857(\mathrm{~m}), \quad 1775(\mathrm{w}), \quad 1707(\mathrm{~s}), \quad 1596(\mathrm{w})$, $1498(\mathrm{~m}), \quad 1383(\mathrm{~m}), \quad 1177(\mathrm{~m}), \quad 1064(\mathrm{~m}), \quad 793(\mathrm{~m}), \quad 723(\mathrm{~m})$; HRMS $m / z\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. 289.0948, found 289.0947. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 72.16; H, 5.30; $\mathrm{N}, 10.52$. Found: C, 71.96; H, 5.43; N, 10.57.

2-(4-Ethylphenyl)-3ac,4,5,8b α-tetrahydro-2H,6H-pyrrolo[3, 4-e]indole-1,3-dione (14). Method A with vinylpyrrole 4 and maleimide 10d gave $\mathbf{1 4}(577 \mathrm{mg}, 49 \%)$ as a white powder: mp $144-146{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, δ) 7.93 (bs, $1 \mathrm{H}, 6-$ $\mathrm{H}), 7.26(\mathrm{~d}, J=8.9,2 \mathrm{H}, \mathrm{Ph}), 7.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph})$, 6.70 (dd, $J=2.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.41$ (dd, $J=2.7,2.7 \mathrm{~Hz}$, $1 \mathrm{H}, 8-\mathrm{H}$), 4.13 (ddd, $J=7.8,1.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha-\mathrm{H}$), 3.43 (ddd, $J=8.1,5.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a} \alpha-\mathrm{H}), 2.63-2.71(\mathrm{~m}, 2 \mathrm{H}, 5 \alpha-$ H and $5 \beta-\mathrm{H}), 2.66$ (q, overlapped, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.52 (dddd, $J=13.7,4.6,4.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}, 4 \beta-\mathrm{H}$), 2.06 (dddd, $J=13.4,8.4,7.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}, 4 \alpha-\mathrm{H}), 1.23(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$) ; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) 178.7, 177.7, 144.7, $129.6,128.6,127.3,126.4,117.3,110.1,107.4,40.6,40.4$, 28.7, 22.1, 19.4, 15.6; IR (KBr, cm ${ }^{-1}$) 3340(bs), 3030(w), 2970(m), 2940(m), 2860(w), 1780(m), 1700(s), 1600(w), $1510(\mathrm{~m}), \quad 1445(\mathrm{w}), \quad 1395(\mathrm{~s}), \quad 1360(\mathrm{w}), \quad 1310(\mathrm{w}), \quad 1295(\mathrm{w})$, $1205(\mathrm{~m}), 1195(\mathrm{~m}), 1170(\mathrm{~m}), 850(\mathrm{w}), 815(\mathrm{w}), 785(\mathrm{~m}), 720(\mathrm{~m})$, 695(m); HRMS m/z (M $+\mathrm{Na}^{+}$) calcd. 317.1261, found 317.1262. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $73.45 ; \mathrm{H}, 6.16$; N , 9.52. Found: C, 73.60; H, 6.26; N, 9.36.

2-(4-Isopropylphenyl)-3ax,4,5,8ba-tetrahydro-2H,6H-pyrrolo [3,4-e]indole-1,3-dione (15). Method A with vinylpyrrole 4 and maleimide 10e gave $\mathbf{1 5}(395 \mathrm{mg}, 32 \%)$ as a light-orange powder: mp $188-190^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, §) 7.93 (bs, $1 \mathrm{H}, 6-\mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.16(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ph}), 6.70(\mathrm{dd}, J=2.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.41$ (dd, J $=2.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 4.13$ (ddd, $J=8.1,1.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}$, $8 \mathrm{~b} \alpha-\mathrm{H}$), 3.44 (ddd, $J=8.1,5.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a} \alpha-\mathrm{H}$), 2.92 (septet, $\left.J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.65(\mathrm{~m}, 2 \mathrm{H}, 5 \alpha-\mathrm{H}$ and $5 \beta-\mathrm{H}), 2.52$ (dddd, $J=13.7,4.6,4.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}, 4 \beta-\mathrm{H}$), 2.06 (dddd, $J=13.5,8.3,7.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}, 4 \alpha-\mathrm{H}$), 1.24 (d, $J=6.9$ $\left.\mathrm{Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) 178.6 , 177.5, 149.2, 129.6, 127.2 (two peaks overlapped), 117.2, $110.2,107.6,40.5,40.4,34.0,24.0,22.0,19.4 ;{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}, δ) 179.0, 177.8, 148.9, 130.7, 127.2 (three peaks overlapped), 117.1, 110.0, 106.8, ~ 40 (two peaks obscured by DMSO), 33.7, 24.3, 22.5, 19.5; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$)

3444(m), 3353(bs), 3105(w), 2959(m), 2931(m), 2863(w), 1773(w), 1704(s), 1513(m), 1463(w), 1428(w), 1381(m), $1347(\mathrm{w}), \quad 1280(\mathrm{w}), \quad 1194(\mathrm{~m}), \quad 1177(\mathrm{~m}), 1152(\mathrm{~m}), 1093(\mathrm{w})$, 1067(w), 1051(w), 721(m); HRMS m/z (M + Na ${ }^{+}$) calcd. 331.1418, found 331.1410. Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 74.00 ; H, 6.54; N, 9.08. Found: C, 74.00; H, 6.51; N, 9.16.

2-(4-Methoxyphenyl)-3ax,4,5,8ba-tetrahydro-2H,6H-pyrrolo [3,4-e]indole-1,3-dione (16). Method A with vinylpyrrole 4 and maleimide $\mathbf{1 0 f}$ gave $\mathbf{1 6}$ ($1.067 \mathrm{~g}, 90 \%$ crude yield, including contamination from double-addition type products, detected by TLC; the crude adduct was recrystallized from methylene chloride/petroleum ether, giving the pure compound, but the isolated yield is not available) as a white powder: mp $187-188^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, δ) 7.94 (bs, $1 \mathrm{H}, 6-\mathrm{H}), 7.17(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 6.94(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ph}), 6.70(\mathrm{dd}, J=2.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.41(\mathrm{dd}, J=$ $2.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}$) , 4.15 (ddd, $J=8.1,1.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}$, $8 \mathrm{~b} \alpha-\mathrm{H}$), 3.82 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.45 (ddd, $J=7.8,5.0,5.0 \mathrm{~Hz}$, $1 \mathrm{H}, 3 \mathrm{a} \alpha-\mathrm{H}$), 2.63-2.67 (m, $2 \mathrm{H}, 5 \alpha-\mathrm{H}$ and $5 \beta-\mathrm{H}$), 2.53 (dddd, J $=13.5,4.5,4.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}, 4 \beta-\mathrm{H}$), 2.06 (dddd, $J=13.7,8.0$, $7.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}, 4 \alpha-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) 178.5 , 177.5, 159.3, 127.7, 127.2, 124.8, 117.2, 114.4, 110.4, 107.7, 55.6, $40.5,40.3,22.0,19.4$; IR (film, $\left.\mathrm{cm}^{-1}\right) 3378(\mathrm{bm})$, 2931(w), 2842(w), 1776(w), 1704(s), 1608(w), 1513(s), 1466(w), 1441(w), 1389(m), 1300(w), 1251(m), 1168(m), 1030(w), 729(w); HRMS m/z (M + Na^{+}) calcd. 319.1054, found 319.1056. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, $68.91 ; \mathrm{H}$, 5.44; N, 9.45. Found: C, 68.86; H, 5.61; N, 9.28.

2-(4-Phenoxyphenyl)-3ac,4,5,8b α-tetrahydro-2H,6H-pyrrolo [3,4-e]indole-1,3-dione (17). Method A with vinylpyrrole 4 and maleimide 10h gave 17 ($473 \mathrm{mg}, 33 \%$) as a light-yellow powder: mp 200-202 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, δ) 7.93 (bs, 1H, 6-H), 7.33-7.39 (m, 2H, Ph), 7.21 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$, Ph), 7.12-7.17 (m, 1H, Ph), 7.01-7.06 (m, 2H, Ph), 7.03 (d, overlapped, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 6.70(\mathrm{dd}, J=2.7,2.7 \mathrm{~Hz}$, $1 \mathrm{H}, 7-\mathrm{H}), 6.41(\mathrm{dd}, J=2.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 4.14$ (ddd, $J=$ $8.1,1.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha-\mathrm{H}$), 3.44 (ddd, $J=7.8,4.9,4.9 \mathrm{~Hz}$, $1 \mathrm{H}, 3 \mathrm{a} \alpha-\mathrm{H}$), 2.63-2.67 (m, 2H, $5 \alpha-\mathrm{H}$ and $5 \beta-\mathrm{H}$), 2.53 (dddd, J $=13.4,4.6,4.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}, 4 \beta-\mathrm{H}), 2.06$ (dddd, $J=13.6,8.5$, $7.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}, 4 \alpha-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) 10.60 (bs, 1H, 6-H), 7.39-7.44 (m, 2H, Ph), 7.15-7.20 (m, 1H, Ph), 7.19 (d, overlapped, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.03-7.07$ (m, 2H, Ph), 7.05 (d, overlapped, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 6.59(\mathrm{dd}, J=$ $2.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.04(\mathrm{dd}, J=2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H})$, 4.02 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha-\mathrm{H}), 3.51$ (ddd, $J=8.1,5.2,5.2$ $\mathrm{Hz}, 1 \mathrm{H}, 3 \mathrm{a} \alpha-\mathrm{H}$), 2.58 (ddd, $J=15.5,4.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}, 5 \beta-\mathrm{H}$), 2.43 (ddd, 15.2, 10.0, $4.9 \mathrm{~Hz}, 1 \mathrm{H}, 5 \alpha-\mathrm{H}$), 2.23 (dddd, $J=$ $13.5,4.8,4.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}, 4 \beta-\mathrm{H}$), 1.88 (dddd, $J=13.6,10.1$, $5.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}, 4 \alpha-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}, δ) $178.9,177.8,156.9,156.6,130.8,129.1,127.9,127.3,124.5$, 119.7, 118.9, 117.1, 110.0, 106.8, 22.5, 21.3, 19.5, 18.2; IR (KBr, cm^{-1}) 3387(bs), 3104(w), 2960(w), 2934(w), 2854(w), 1771(w), 1702(s), 1588(m), 1506(m), 1487(m), 1430(w), 1390(m), 1352(w), 1285(w), 1244(s), 1199(m), 1179(m), 1155(m), 1093(w), 1069(w), 876(w), 723(m); HRMS m/z (M $+\mathrm{Na}^{+}$) calcd. 381.1210, found 381.1202. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 73.73; H, 5.06; N, 7.82. Found: C, 73.95; H, 5.03; N, 7.71.

2-Dimethylamino-6-methyl-3ax,4,5,8b α-tetrahydro-2H,6H-pyrrolo[3,4-e]indole-1,3-dione (18). Method A with vinylpyrrole 3d and maleimide 10a gave $\mathbf{1 8}(880 \mathrm{mg}, 89 \%)$ as a dark-
brown oil: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, δ) 6.54 (d, $J=2.7$ $\mathrm{Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.28(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 3.87$ (ddd, $J=$ $8.1,1.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha-\mathrm{H}), 3.50\left(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right), 3.15$ (ddd, J $=8.1,5.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a} \alpha-\mathrm{H}), 2.85\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.58$ (dddd, $J=16.1,5.6,5.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 5 \beta-\mathrm{H}$), 2.48 (dddd, $J=$ $15.5,9.5,5.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 5 \alpha-\mathrm{H}$), 2.34 (dddd, $J=13.4,5.3$, $5.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}, 4 \beta-\mathrm{H}$), 1.99 (dddd, $J=13.5,9.1,5.5,5.5 \mathrm{~Hz}$, $1 \mathrm{H}, 4 \alpha-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) $177.5,176.6$, 128.1, 121.5, 110.1, 106.5, 44.0, 38.9, 38.6, 33.2, 22.1, 18.2; IR (film, $\quad \mathrm{cm}^{-1}$) $3105(\mathrm{w}), \quad 3054(\mathrm{w}), \quad 2931(\mathrm{~m}), \quad 2891(\mathrm{~m})$, 1777(m), 1716(s), 1497(m), 1446(m), 1364(s), 1270(w), 1248(w), 1181(m), 1145(m), 1053(w), 714(m); HRMS m/z (M $+\mathrm{Na}^{+}$) calcd. 270.1214, found 270.1221. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 63.14; H, 6.93; N, 16.99. Found: C, 62.94; H, 7.07; N, 16.76.

6-Methyl-2-phenyl-3aג,4,5,8b α-tetrahydro-2H,6H-pyrrolo [3,4-e]indole-1,3-dione (19). Method A with vinylpyrrole 3d and maleimide 10c gave $19(1.054 \mathrm{~g}, 94 \%)$ as a light-brown powder: mp $169-170^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) $7.38-$ 7.47 (m, 2H, Ph), 7.32-7.38 (m, 1H, Ph), 7.24-7.29 (m, 2H, Ph), 6.57 (d, $J=2.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.33(\mathrm{~d}, J=2.7,2.7$ $\mathrm{Hz}, 1 \mathrm{H}, 8-\mathrm{H}$), 4.13 (ddd, $J=8.4,1.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha-\mathrm{H}$), 3.52 (s, 3H, $6-\mathrm{CH}_{3}$), 3.43 (ddd, $J=8.1,4.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a} \alpha-$ H), $2.50-2.68(\mathrm{~m}, 3 \mathrm{H}, 4 \beta-\mathrm{H}, 5 \alpha-\mathrm{H}$ and $5 \beta-\mathrm{H}), 2.05$ (dddd, $J=$ $15.4,12.5,6.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 4 \alpha-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, §) $178.2,177.2,132.2,129.0,128.3,128.2,126.4,121.6$, 110.6, 106.5, 40.6, 40.4, 33.2, 21.7, 18.2; IR (film, cm^{-1}) 3060(w), 2931(m), 2849(w), 1777(w), 1711(s), 1596(w), 1498(m), 1455(w), 1380(m), 1290(w), 1269(w), 1173(m), 1150(m), 718(m), 692(m); HRMS m/z (M + Na+ $)$ calcd. 303.1105, found 303.1109. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 72.84; H, 5.75; N, 9.99. Found: C, 72.60; H, 5.67; N, 9.81.

2-(4-Methoxyphenyl)-6-methyl-3ax,4,5,8b α-tetrahydro-2H, 6H-pyrrolo[3,4-e]indole-1,3-dione (20). Method A with vinylpyrrole 3d and maleimide $\mathbf{1 0 f}$ gave $20(1.154 \mathrm{~g}, 93 \%)$ as a cream-colored powder: mp $161-162^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right) 7.17(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 6.94(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ph}), 6.57(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.33(\mathrm{~d}, J=2.7 \mathrm{~Hz}$, $1 \mathrm{H}, 8-\mathrm{H}$), 4.11 (ddd, $J=8.4,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha-\mathrm{H}), 3.82$ (s, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.52\left(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right), 3.40(\mathrm{ddd}, J=7.8,4.7,4.7$ $\mathrm{Hz}, 1 \mathrm{H}, 3 \mathrm{a} \alpha-\mathrm{H}), 2.49-2.68(\mathrm{~m}, 3 \mathrm{H}, 4 \beta-\mathrm{H}, 5 \alpha-\mathrm{H}$ and $5 \beta-\mathrm{H})$, 2.05 (dddd, $J=16.5,7.6,6.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}, 4 \alpha-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 178.5,177.5,159.3,128.2,127.6,124.9$, $121.5,114.3,110.6,106.5,55.6,40.5,40.4,33.2,21.8,18.2$; IR (film, cm^{-1}) 2934(w), 2841(w), 1776(w), 1709(s), 1609(w), 1513(s), 1442(w), 1386(m), 1300(w), 1250(m), 1171(m), 1151(w), 1030(w); HRMS $m / z\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. 333.1210, found 333.1222. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 69.66; H , 5.85; N, 9.03. Found: C, 69.89; H, 6.00; N, 8.90 .

2-Dimethylamino-5 $\beta, 6$-dimethyl-3ax,4,5, $8 b \alpha-$ tetrahydro-2H, 6H-pyrrolo[3,4-ejindole-1,3-dione (21). Method A with vinylpyrrole 3e and maleimide 10a with reflux gave $21(899 \mathrm{mg}$, 86%) as a light-orange powder: $\mathrm{mp} 100-101^{\circ} \mathrm{C} ; \mathrm{maj} / \mathrm{min}=$ 13:1; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 6.55(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}$, $7-\mathrm{H}), 6.28(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 3.92(\mathrm{dd}, J=9.0,0.6$ $\mathrm{Hz}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha-\mathrm{H}), 3.53\left(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right), 3.14$ (ddd, $J=8.9,7.0$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a} \alpha-\mathrm{H}$), 3.02 (dddq, $J=7.2,5.7,2.1,0.6 \mathrm{~Hz}, 1 \mathrm{H}$, $5 \alpha-\mathrm{H}), 2.87\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.50$ (ddd, $J=14.1,2.1,2.1$ $\mathrm{Hz}, 1 \mathrm{H}, 4 \beta-\mathrm{H}$), 2.04 (ddd, $J=14.1,7.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}, 4 \alpha-\mathrm{H}$), $1.11\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, 5 \beta-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right) 178.7,176.6,132.5,121.9,109.2,106.5,43.7,38.3$,
36.8, 33.0, 28.8, 25.3, 22.0; IR (film, cm^{-1}) 2962(s), 1777(m), 1711(s), $1500(\mathrm{w}), \quad 1446(\mathrm{w}), \quad 1369(\mathrm{~m}), \quad 1293(\mathrm{w}), \quad 1189(\mathrm{~m})$, 1149(m), 1046(w); HRMS m/z (M + Na ${ }^{+}$) calcd. 284.1370, found 284.1373. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, $64.35 ; \mathrm{H}$, 7.33; N, 16.08. Found: C, $64.15 ; H, 7.12 ; ~ N, ~ 16.18 . ~$

5及,6-Dimethyl-2-phenyl-3a $\alpha, 4,5 \alpha, 8 b \alpha-$ tetrahydro-2H,6H-pyrrolo[3,4-e]indole-1,3-dione (22). Method A with vinylpyrrole 3 e and maleimide 10c with reflux gave $22(1.071 \mathrm{~g}$, 91%) as a light-yellow cream-colored powder: mp $239-240^{\circ} \mathrm{C}$; $\mathrm{maj} / \mathrm{min}=54: 1 ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 7.42-7.48(\mathrm{~m}$, 2H, Ph), 7.33-7.39 (m, 1H, Ph), 7.25-7.29 (m, 2H, Ph), 6.58 (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.32(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 4.16$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha-\mathrm{H}$), 3.55 ($\mathrm{s}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}$), 3.39 (ddd, J $=8.8,6.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a} \alpha-\mathrm{H}$), 3.08 (ddq, $J=6.6,6.6,2.4 \mathrm{~Hz}$, $1 \mathrm{H}, 5 \alpha-\mathrm{H}$), 2.62 (ddd, $J=14.1,2.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}, 4 \beta-\mathrm{H}), 2.16$ (ddd, $J=14.0,6.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}, 4 \alpha-\mathrm{H}), 1.19(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $\left.3 \mathrm{H}, 5 \beta-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, δ) 179.5, 177.3, $132.6,132.3,129.1,128.4,126.4,122.0,109.5,106.5,40.0$, 38.6, 33.1, 29.0, 25.4, 22.2; IR (film, cm^{-1}) 2960(m), 2956(m), 1775(w), 1711(s), 1595(w), 1499(m), 1453(w), 1380(m), 1348(m), 1293(w), 1270(w), 1175(m), 1157(m), 1062(w), 741(w), 728(w), 717(w), 691(m); HRMS $m / z\left(M+\mathrm{Na}^{+}\right)$calcd. 317.1261, found 317.1253. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 73.45 ; H, 6.16; N, 9.52. Found: C, 73.55; H, 6.31; N, 9.51.

2-(4-Methoxyphenyl)-5 ,6-dimethyl-3a $\alpha, 4,5 \alpha, 8 b \alpha$-tetrahydro-2H,6H-pyrrolo[3,4-e]indole-1,3-dione (23). Method A with vinylpyrrole 3e and maleimide $\mathbf{1 0 f}$ with reflux gave 23 (1.207 $\mathrm{g}, 93 \%$) as a white powder: $\mathrm{mp} 190-191^{\circ} \mathrm{C}$; maj/min $=37: 1$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 7.18(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph})$, $6.95(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 6.57(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H})$, $6.32(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 4.15(\mathrm{dd}, J=8.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}$, $8 \mathrm{~b} \alpha-\mathrm{H}$), 3.82 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.55 (s, $3 \mathrm{H}, 6-\mathrm{CH}_{3}$), 3.37 (ddd, J $=8.9,6.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a} \alpha-\mathrm{H}$), 3.07 (dddq, $J=6.9,5.7,2.1$, $0.6 \mathrm{~Hz}, 1 \mathrm{H}, 5 \alpha-\mathrm{H}$), 2.61 (ddd, $J=14.1,2.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}, 4 \beta-$ H), 2.15 (ddd, $J=14.1,6.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}, 4 \alpha-\mathrm{H}), 1.17(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}, 5 \beta-\mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) 179.7, $177.5,159.4,132.6,127.7,125.0,122.0,114.5,109.6,106.5$, $55.6,39.9,38.5,33.1,29.0,25.4,22.2$; IR (film, cm^{-1}) 2964(m), 1777(w), 1709(s), 1610(w), 1513(s), 1386(m), 1299(w), 1250(m), 1196(m), 1030(w); HRMS m/z (M + Na ${ }^{+}$) calcd. 347.1367, found 347.1367. Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 70.35 ; \mathrm{H}, 6.21 ; \mathrm{N}, 8.64$. Found: C, $70.20 ; \mathrm{H}$, 6.37; N, 8.44.

2-Dimethylamino-4-methyl-3ax,4,5,8b α-tetrahydro-2H,6H-pyrrolo[3,4-e]indole-1,3-dione (24). Method A with vinylpyrrole 3b and maleimide 10a with reflux gave $24(564 \mathrm{mg}, 57 \%)$ as a brown powder: $\mathrm{mp} 117-118^{\circ} \mathrm{C}$; maj$/ \mathrm{min}=1.4: 1.0 ;{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 7.94$ (bs, $1 \mathrm{H}, 6-\mathrm{H}$), 6.66-6.69 (m, $1 \mathrm{H}, 7-\mathrm{H}), 6.35-6.66(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}), 3.83-3.87(\mathrm{~m}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha-\mathrm{H})$, 3.12 (ddd, $J=7.8,4.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 3$ aamin-H), 2.83-2.88 (m, $1 \mathrm{H}, ~ 3 a \alpha m a j-\mathrm{H}$), 2.85 (s, overlapped by 3aamaj-H, 6 H , $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ maj), 2.84 (s, overlapped by 3aamaj-H, 6 H , $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~min}\right), 2.32-2.78(\mathrm{~m}, 3 \mathrm{H}, 4-\mathrm{H}$ and $5-\mathrm{H} \times 2), 1.34(\mathrm{~d}, J$ $\left.=6.9 \mathrm{~Hz}, 3 \mathrm{H}, 4 \beta \mathrm{~min}-\mathrm{CH}_{3}\right), 1.56(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, 4 \alpha \mathrm{maj}-$ CH_{3}); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) 177.2, 176.6, 125.7, $117.2,109.0,107.5,45.1,44.0,37.9,28.2,27.4,19.5$; IR (film, cm^{-1}) $3321(\mathrm{bm}), 2960(\mathrm{~m}), 1776(\mathrm{w}), 1710(\mathrm{~s}), 1448(\mathrm{w})$, 1367(m), 1199(m), 1145(m), 1063(w), 719(w); HRMS m/z $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. 270.1214, found 270.1217. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 63.14; H, 6.93; N, 16.99. Found: C, 63.40; H, 7.10; N, 16.88.

4-Methyl-2-phenyl-3ax,4,5,8b α-tetrahydro-2H,6H-pyrrolo [3,4-e]indole-1,3-dione (25). Method A with vinylpyrrole 3b and maleimide 10c with reflux gave $25(1.043 \mathrm{~g}, 93 \%)$ as a cream-colored powder: $\mathrm{mp} 208-209^{\circ} \mathrm{C}$; maj $/ \mathrm{min}=2.0: 1.0 ;{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 7.90$ (bs, $1 \mathrm{H}, 6-\mathrm{H}$), 7.21-7.46 (m, $5 \mathrm{H}, \mathrm{Ph}), 6.68-6.71(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 6.39-6.41(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H})$, 4.11 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 8$ bamin-H), 4.10 (d, overlapped by 8bamin-H, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha$ maj-H), 3.38 (dd, $J=7.7,4.1$ $\mathrm{Hz}, 1 \mathrm{H}, 3 \mathrm{a} \alpha \min -\mathrm{H}$), 3.14 (ddd, $J=8.0,5.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}$, 3a α maj-H), 2.39-2.86 (m, 3H, 4-H and 5-H $\times 2$), $1.47(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}, 4 \beta \mathrm{~min}-\mathrm{CH}_{3}$), 1.21 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, 4 \alpha \mathrm{maj}-$ CH_{3}); ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}, δ) $178.3,177.5,133.0$, 129.4, 128.6, 127.4, 125.8, 117.2, 109.0, 106.8, 46.7, 41.3, 28.6, 27.5, 19.9; IR (film, cm^{-1}) 3367 (bs), $3050(\mathrm{~m}), 2990(\mathrm{~m})$, 2900(m), 1776(w), 1693(s), 1591(w), 1495(w), 1453(w), 1386(m), $\quad 1177(\mathrm{~m}), \quad 1164(\mathrm{~m}), \quad 1065(\mathrm{w}), \quad 786(\mathrm{w}), \quad 769(\mathrm{w})$, 741(w); HRMS m/z $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. 303.1105, found 303.1103. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 72.84; $\mathrm{H}, 5.75 ; \mathrm{N}$, 9.99. Found: C, 72.61 ; H, 5.59; N, 9.96.

2-(4-Methoxyphenyl)-4-methyl-3ax,4,5,8b α-tetrahydro-2H, 6H-pyrrolo[3,4-e]indole-1,3-dione (26). Method A with vinylpyrrole 3b and maleimide $\mathbf{1 0 f}$ with reflux gave 26 (1.117 $\mathrm{g}, 90 \%$) as a cream-colored powder: $\mathrm{mp} 163-164^{\circ} \mathrm{C}$; maj$/ \mathrm{min}$ $=1.3: 1.0 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 7.91(\mathrm{bs}, 1 \mathrm{H}, 6-\mathrm{H})$, 7.10-7.19 (m, 4H, Ph), 6.68-6.71 (m, 1H, 7-H), 6.38-6.41 (m, $1 \mathrm{H}, 8-\mathrm{H}), 4.05-4.11(\mathrm{~m}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha-\mathrm{H}), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.36$ (ddd, $J=7.5,4.2,0.6 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a} \alpha \min -\mathrm{H}$), 3.11 (ddd, $J=8.0$, $4.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a} \alpha \mathrm{maj}-\mathrm{H}), 2.37-2.86(\mathrm{~m}, 3 \mathrm{H}, 4-\mathrm{H}$ and $5-\mathrm{H}$ $\times 2), 1.45\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 4 \beta \mathrm{~min}-\mathrm{CH}_{3}\right), 1.21(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}, 4 \alpha \mathrm{maj}-\mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) 178.1 , $177.5,159.3,127.7,125.7,124.7,117.3,114.4,109.3,107.5$, $55.6,46.8,39.4,28.0,27.2,19.6$; IR (film, cm^{-1}) 3370 (bs), 2930(m), 2870(m), 1767(w), 1703(s), 1609(w), 1513(s), 1442(w), 1389(m), 1300(w), 1251(m), 1192(m), 1166(m), 1028(w), 721(w); HRMS m/z (M + Na^{+}) calcd. 333.1210, found 333.1216. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, $69.66 ; \mathrm{H}$, 5.85; N, 9.03. Found: C, 69.45; H, 6.00; N, 8.83 .

2-Dimethylamino-4,6-dimethyl-3a $, 4,5,8 b \alpha-$ tetrahydro-2H, 6H-pyrrolo[3,4-e]indole-1,3-dione (27). Method A with vinylpyrrole 3f and maleimide 10a with reflux gave 27 (700 $\mathrm{mg}, 67 \%$) as a cream-colored powder: $\mathrm{mp} 85-86^{\circ} \mathrm{C}$; maj $/ \mathrm{min}$ $=1.2: 1.0 ;{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 6.55(\mathrm{~d}, J=2.7 \mathrm{~Hz}$, $1 \mathrm{H}, 7 \mathrm{~min}-\mathrm{H}), 6.52$ (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, 7 \mathrm{maj}-\mathrm{H}), 6.28(\mathrm{~d}, J=$ $2.7 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~min}-\mathrm{H}), 6.26(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{maj}-\mathrm{H}), 3.85$ (ddd, $J=7.5,1.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha \mathrm{maj}-\mathrm{H}$), $3.80-3.84$ (m, overlapped by 8 bamaj-H, 1H, 8bamin-H), 3.09 (ddd, $J=7.6,4.1$, $0.6 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a} \alpha \mathrm{maj}-\mathrm{H}$), 2.81-2.86 (m, 1H, 3a<min-H), 2.85 (s, overlapped by $3 \mathrm{a} \alpha \mathrm{min}-\mathrm{H}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~min}$), 2.83 (s, overlapped by 3aamin-H, $\left.6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{maj}\right), 2.27-2.70(\mathrm{~m}, 3 \mathrm{H}, 4-\mathrm{H}$ and $5-\mathrm{H} \times 2), 1.40\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, 4 \beta \mathrm{maj}-\mathrm{CH}_{3}\right), 1.18(\mathrm{~d}, J$ $=6.6 \mathrm{~Hz}$, 4amaj- CH_{3}); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) 176.8 , $176.5,128.0,121.4,110.2,106.3,44.0,43.5,39.9,33.1,29.9$, 26.5, 18.2; IR (film, cm^{-1}) 2956(m), 2893(m), 1776(m), 1713(s), 1500(w), 1448(m), 1365(m), 1196(m), 1181(m), 1144(m), 706(w), 662(w); HRMS $m / z\left(M+\mathrm{Na}^{+}\right)$calcd. 284.1370, found 284.1370. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 64.35; H, 7.33 ; N, 16.08. Found: C, 64.30; H, 7.51; N, 16.11.

4,6-Dimethyl-2-phenyl-3ax,4,5,8ba-tetrahydro-2H,6H-pyr-rolo[3,4-e]indole-1,3-dione (28). Method A with vinylpyrrole 3f and maleimide $\mathbf{1 0 c}$ with reflux gave $28(1.048 \mathrm{~g}, 89 \%)$ as a light-brown powder: $\mathrm{mp} 178-179^{\circ} \mathrm{C}$; maj $/ \mathrm{min}=2.4: 1.0 ;{ }^{1} \mathrm{H}$

NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, δ) $7.20-7.46$ ($\mathrm{m}, 5 \mathrm{H}, \mathrm{Ph}$), 6.57 (d, J $=2.7 \mathrm{~Hz}, 1 \mathrm{H}, 7 \mathrm{~min}-\mathrm{H}), 6.55(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, 7 \mathrm{maj}-\mathrm{H})$, $6.32(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~min}-\mathrm{H}), 6.30(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}$, $8 \mathrm{maj}-\mathrm{H}), 4.07-4.13(\mathrm{~m}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha-\mathrm{H}), 3.51$ (s, $3 \mathrm{H}, 6-\mathrm{CH}_{3}$), 3.36 (ddd, $J=7.4,3.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}, 3$ maj-H), 3.12 (ddd, $J=8.0$, $4.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 3 \alpha \mathrm{~min}-\mathrm{H}), 2.32-2.83(\mathrm{~m}, 3 \mathrm{H}, 4-\mathrm{H}$ and $5-\mathrm{H} \times$ 2), 1.52 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, 4 \alpha$ maj- CH_{3}), 1.23 (d, $J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}, 4 \beta \min -\mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) $177.3,177.0$, 132.1, 129.0, 128.4, 128.2, 126.4, 121.6, 110.7, 106.4, 45.5, $42.0,33.2,30.0,26.4,18.7$; IR (film, cm^{-1}) $3060(\mathrm{~m})$, $3030(\mathrm{~m}), \quad 2929(\mathrm{~m}), \quad 1775(\mathrm{w}), \quad 1710(\mathrm{~s}), \quad 1597(\mathrm{w}), \quad 1498(\mathrm{~m})$, 1453(w), 1377(m), 1174(m), 1142(m), 691(w); HRMS m/z (M $+\mathrm{Na}^{+}$) calcd. 317.1261, found 317.1268. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 73.45 ; H, 6.16; N, 9.52. Found: C, 73.51; H, 5.98; N, 9.54.

2-(4-Methoxyphenyl)-4,6-dimethyl-3ax,4,5,8b α-tetrahydro-2H,6H-pyrrolo[3,4-e]indole-1,3-dione (29). Method A with vinylpyrrole $\mathbf{3 f}$ and maleimide $\mathbf{1 0 f}$ with reflux gave 29 (1.090 $\mathrm{g}, 84 \%$) as a light-brown powder: $\mathrm{mp} 126-127^{\circ} \mathrm{C}$; $\mathrm{maj} / \mathrm{min}=$ 2.4:1.0; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) $7.10-7.19(\mathrm{~m}, 2 \mathrm{H}$, Ph), 6.90-7.00 (m, 2H, Ph), 6.57 (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, 7 \mathrm{~min}-\mathrm{H})$, 6.55 (d, $J=3.0,1 \mathrm{H}, 7 \mathrm{maj}-\mathrm{H}), 6.32(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~min}-$ H), $6.30(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{maj}-\mathrm{H}), 4.05-4.10(\mathrm{~m}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha-$ H), $3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.51\left(\mathrm{~s}, 3 \mathrm{H} 6-\mathrm{CH}_{3}\right), 3.33(\mathrm{ddd}, J=$ $7.6,3.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 3 \alpha \mathrm{maj}-\mathrm{H}$), 3.09 (ddd, $J=7.9,4.6,0.8$, $1 \mathrm{H}, 3 \mathrm{a} \alpha \mathrm{min}-\mathrm{H}), 2.32-2.81(\mathrm{~m}, 3 \mathrm{H}, 4-\mathrm{H}$ and $5-\mathrm{H} \times 2), 1.51(\mathrm{~d}$, $\left.J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, 4 \alpha \mathrm{maj}-\mathrm{CH}_{3}\right), 1.22(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, $4 \beta \mathrm{~min}-\mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, 反) 177.6, 177.3, $159.2,128.4,127.7,124.8,121.5,114.3,110.8,106.4,55.6$, $45.4,41.8,33.2,30.0,26.5,18.6$; IR (film, cm^{-1}) $2950(\mathrm{~m})$, 2931(m), 2839(m), 1770(w), 1708(s), 1610(w), 1513(s), 1442(w), 1384(m), 1300(w), 1250(m), 1168(m), 1143(w), 1031(w), 704(w); HRMS m/z (M + Na ${ }^{+}$) calcd. 347.1367, found 347.1362. Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$: $\mathrm{C}, 70.35$; H , 6.21 ; N, 8.64. Found: C, 70.51 ; H, 6.40; N, 8.79.
4α-Ethyl-2-phenyl-3a⿱, $4 \beta, 5,8 b \alpha-$ tetrahydro- $2 \mathrm{H}, 6 \mathrm{H}$-pyrrolo [3,4-e]indole-1,3-dione (30). Method B with vinylpyrrole 5a and maleimide 10c gave $\mathbf{3 0}(424 \mathrm{mg}, 36 \%)$ as a white powder: $\mathrm{mp} 203-204{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) 7.93 (bs, 1 H , $6-\mathrm{H}), 7.40-7.44(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.32-7.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 7.22-$ $7.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 6.66(\mathrm{dd}, J=2.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.35$ (dd, $J=2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 4.05(\mathrm{ddd}, J=7.5,1.4,1.4$ $\mathrm{Hz}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha-\mathrm{H}), 3.28$ (ddd, $J=7.5,4.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a} \alpha-\mathrm{H}$), 2.77 (ddd, $J=15.8,5.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}, 5 \beta-\mathrm{H}), 2.61(\mathrm{~m}, 1 \mathrm{H}, 4 \beta-$ H), 2.51 (dd, $J=15.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}, 5 \alpha-\mathrm{H}$, see $3 \mathrm{a} \alpha-\mathrm{H}$ and $8 \mathrm{~b} \alpha-$ H), $1.56\left(\mathrm{ddq}, J=14.1,8.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}, 4 \alpha-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.44$ (ddq, $J=14.4,7.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}, 4 \alpha-\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.00(\mathrm{dd}, J=$ $7.3,7.3 \mathrm{~Hz}, 3 \mathrm{H}, 4 \alpha-\mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}, ס) 10.57 (bs, $1 \mathrm{H}, 6-\mathrm{H}), 7.35-7.48(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 7.17-7.18(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ph}), 6.59$ (dd, $J=2.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.02$ (dd, $J=$ $2.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 3.98(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha-\mathrm{H}), 3.41$ (ddd, $J=8.1,4.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a} \alpha-\mathrm{H}), 2.60(\mathrm{dd}, J=15.9,5.1$ $\mathrm{Hz}, 1 \mathrm{H}, 5 \beta-\mathrm{H}), 2.45$ (dd, $J=15.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}, 5 \alpha-\mathrm{H}), 2.32-$ $2.40(\mathrm{~m}, 1 \mathrm{H}, 4 \beta-\mathrm{H}), 1.47(\mathrm{ddq}, J=14.2,7.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}, 4 \alpha-$ $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.32 (ddq, $J=14.3,7.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}, 4 \alpha-\mathrm{CH}_{2} \mathrm{CH}_{3}$), 0.93 (dd, $J=7.5,7.5 \mathrm{~Hz}, 3 \mathrm{H}, 4 \alpha-\mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 178.1,177.3,132.1,129.0,128.3,126.4$, $125.6,117.2,109.6,107.6,45.2,39.3,33.9,25.6,23.8,12.1$; ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}, δ) 178.6, 177.7, 132.9, 129.4, 128.6, 127.3, 125.5, 117.2, 109.2, 106.7, 44.8, ~ 40 (obscured by DMSO), 34.4, 25.6, 24.1, 12.3; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) $3346(\mathrm{bs})$,

3064(w), 2962(m), 2962(m), 2925(m), 2875(m), 2859(m), 1771(m), 1699(s), 1599(w), 1499(m), 1459(w), 1390(m), 1308(w), 1287(w), 1187(s), 1150(m), 1083(w), 1065(w), 743(m), 731(m), 689(m); HRMS m/z (M + Na ${ }^{+}$) calcd. 317.1261, found 317.1263. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 73.45; H, 6.16; N, 9.52. Found: C, 73.60; H, 6.08; N, 9.71.

4 α-Ethyl-2-(4-ethylphenyl)-3ax,4 $\beta, 5,8 b \alpha$-tetrahydro- $2 \mathrm{H}, 6 \mathrm{H}$ -pyrrolo[3,4-e]indole-1,3-dione (31). Method A with vinylpyrrole 5a and maleimide 10d gave 31 ($903 \mathrm{mg}, 70 \%$), method B with vinylpyrrole 5a and maleimide 10d gave 31 (529 mg , 41%), as a light-orange powder: mp $247-248^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 7.93$ (bs, $1 \mathrm{H}, 6-\mathrm{H}$), $7.25(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ph}), 7.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 6.67(\mathrm{dd}, J=2.6,2.6$ $\mathrm{Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.36$ (dd, $J=2.7,2.7,1 \mathrm{H}, 8-\mathrm{H}), 4.05$ (ddd, $J=$ $7.8,1.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha-\mathrm{H}$), 3.28 (ddd, $J=7.8,3.9,0.9 \mathrm{~Hz}$, $1 \mathrm{H}, 3 \mathrm{a} \alpha-\mathrm{H}$), 2.78 (ddd, $J=15.3,5.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 5 \beta-\mathrm{H}$), 2.66 (q, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{3}$), 2.58-2.64 (m, overlapped by $\left.\mathrm{PhCH}_{2} \mathrm{CH}_{3}, 1 \mathrm{H}, 4 \beta-\mathrm{H}\right), 2.52(\mathrm{dd}, J=15.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}, 5 \alpha-\mathrm{H}$, see $3 \mathrm{a} \alpha-\mathrm{H}$ and $8 \mathrm{~b} \alpha-\mathrm{H}$), 1.56 (ddq, $J=13.8,7.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}$, $4 \alpha-\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.44 (ddq, $J=14.3,7.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}, 4 \alpha-$ $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.23\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{3}\right), 1.00(\mathrm{dd}, J=$ 7.7 Hz, $3 \mathrm{H}, 4 \alpha-\mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) $178.3,177.5,144.6,129.6,128.5,126.3,125.6,117.1,109.7$, $107.6,45.2,39.3,34.0,28.6,25.6,23.8,15.5,12.1$; IR (KBr , cm^{-1}) $\quad 3342(\mathrm{bs}), \quad 2960(\mathrm{~m}), \quad 2929(\mathrm{w}), \quad 2872(\mathrm{w}), \quad 1768(\mathrm{~m})$, 1697(s), 1514(m), 1461(w), 1444(w), 1392(m), 1306(w), 1289(w), 1190(s), 1151(m), 834(w), 772(m), 723(m), 702(m); HRMS m/z $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. 345.1574, found 345.1575. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $74.51 ; \mathrm{H}, 6.88 ; \mathrm{N}, 8.69$. Found: C, 74.48; H, 6.96; N, 8.68.
4-(4 α-Ethyl-1,3-dioxo-3a $, 4 \beta, 5,8 b \alpha$-tetrahydro-2H,6H-pyr-rolo[3,4-e]indol-2-yl)phenyl acetate (32). Method B with vinylpyrrole 5a and maleimide $\mathbf{1 0 g}$ gave 32 ($437 \mathrm{mg}, 31 \%$) as a cream-colored powder: mp $218-219^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right) 7.93$ (bs, $\left.1 \mathrm{H}, 6-\mathrm{H}\right), 7.29(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph})$, 7.16 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 6.67(\mathrm{dd}, J=2.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}$, $7-\mathrm{H}), 6.35$ (dd, $J=2.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 4.06$ (ddd, $J=7.8$, $1.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha-\mathrm{H}$), 3.29 (ddd, $J=7.7,3.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}$, $3 \mathrm{a} \alpha-\mathrm{H}$), 2.78 (ddd, $J=14.4,5.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 5 \beta-\mathrm{H}$), $2.58-$ $2.65(\mathrm{~m}, 1 \mathrm{H}, 4 \beta-\mathrm{H}), 2.52(\mathrm{dd}, J=15.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}, 5 \alpha-\mathrm{H}$, see $3 \mathrm{a} \alpha-\mathrm{H}$ and $8 \mathrm{~b} \alpha-\mathrm{H}$), 2.29 (s, $3 \mathrm{H}, \mathrm{Ac}$), 1.56 (ddq, $J=14.4,7.5$, $7.4 \mathrm{~Hz}, 1 \mathrm{H}, 4 \alpha-\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.47 (ddq, $J=14.7,7.4,7.2 \mathrm{~Hz}$, $1 \mathrm{H}, 4 \alpha-\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.01 (dd, $J=7.4,7.4 \mathrm{~Hz}, 3 \mathrm{H}, 4 \alpha-\mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 177.9,177.1,169.2,150.1$, $129.5,127.4,125.6,122.2,117.2,109.5,107.5,45.1,39.3$, $33.9,25.6,23.8,21.2,12.1$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) $3359(\mathrm{bs})$, 3114(w), 3081(w), 2964(m), 2926(m), 2876(m), 2855(w), 1767(m), 1699(s), 1601(w), 1510(m), 1464(w), 1441(w), 1392(s), $1372(\mathrm{~m}), \quad 1199(\mathrm{~s}), \quad 1150(\mathrm{~m}), \quad 1105(\mathrm{w}), \quad 1084(\mathrm{w})$, 1016(w), 938(w), 911(w), 849(w), 773(m), 719(m), 706(m); HRMS $m / z\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. 375.1316, found 375.1317. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 68.17; H, 5.72; $\mathrm{N}, 7.95$. Found: C, 67.89; H, 5.53; N, 7.90.

4 α-Ethyl-2-(4-hydroxyphenyl)-3a $, 4 \beta, 5,8 b \alpha-$ tetrahydro-2H, 6H-pyrrolo[3,4-e]indole-1,3-dione (33). Method B with vinylpyrrole 5 a and maleimide $\mathbf{1 0 i}$ gave 33 ($670 \mathrm{mg}, 54 \%$) as a cream-colored powder: mp $238-239^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- $\left.d_{6}, \delta\right) 10.54(\mathrm{bs}, 1 \mathrm{H}, 6-\mathrm{H}), 9.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 6.92(\mathrm{~d}, J$ $=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 6.78(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 6.57(\mathrm{dd}, J$ $=2.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.01(\mathrm{dd}, J=2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H})$, 3.93 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha-\mathrm{H}), 3.35$ (dd, overlapped by
$\left.\mathrm{H}_{2} \mathrm{O}, J=4.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a} \alpha-\mathrm{H}\right), 2.57(\mathrm{dd}, J=16.2,4.8 \mathrm{~Hz}$, $1 \mathrm{H}, 5 \beta-\mathrm{H}), 2.44(\mathrm{dd}, J=15.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}, 5 \alpha-\mathrm{H}), 2.33-2.39$ $(\mathrm{m}, 1 \mathrm{H}, 4 \beta-\mathrm{H}), 1.45$ (ddq, $J=13.8,7.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}, 4 \alpha-$ $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.27 (ddq, $J=14.1,7.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}, 4 \alpha-\mathrm{CH}_{2} \mathrm{CH}_{3}$), 0.91 (dd, $J=7.5,7.5 \mathrm{~Hz}, 3 \mathrm{H}, 4 \alpha-\mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}, δ) 178.9, 178.0, 157.6, 128.6, 125.5, 124.0, 117.1, 115.8, 109.4, 106.7, 44.6, ~ 40 (obscured by DMSO), $34.4,25.6,24.1,12.3$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3467(\mathrm{~m}), 3374(\mathrm{bm})$, 2965(w), 2927(w), 2877(w), 1767(w), 1696(s), 1601(w), 1518(m), 1447(w), 1398(m), 1274(w), 1198(m), 1165(m), 1105(w), 1065(w), 1021(w), 837(w), 776(w), 725(m), 708(m); HRMS $m / z\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. 333.1210, found 333.1205. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 69.66; H, 5.85; N, 9.03. Found: C, 69.49; H, 6.05; N, 9.20.

2-(4-Chlorophenyl)-4 α-ethyl-3a $, 4 \beta, 5,8 b \alpha$-tetrahydro- $2 H$, 6H-pyrrolo[3,4-e]indole-1,3-dione (34). Method B with vinylpyrrole $\mathbf{5 a}$ and maleimide $\mathbf{1 0 j}$ gave $\mathbf{3 4}(421 \mathrm{mg}, 32 \%)$ as a white powder: $\mathrm{mp} 197-198^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ס) $7.88(\mathrm{bs}, 1 \mathrm{H}, 6-\mathrm{H}), 7.40(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.22(\mathrm{~d}, J$ $=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 6.69(\mathrm{dd}, J=2.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.36$ (d, $J=2.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}$), 4.06 (ddd, $J=8.1,1.4,1.4 \mathrm{~Hz}$, $1 \mathrm{H}, 8 \mathrm{~b} \alpha-\mathrm{H}$), 3.29 (ddd, $J=7.8,3.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a} \alpha-\mathrm{H}$), 2.78 (ddd, $J=15.3,5.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}, 5 \beta-\mathrm{H}), 2.58-2.65(\mathrm{~m}, 1 \mathrm{H}, 4 \beta-$ H), $2.53(\mathrm{dd}, J=16.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}, 5 \alpha-\mathrm{H}$, see $3 \mathrm{a} \alpha-\mathrm{H}$ and $8 \mathrm{~b} \alpha-$ H), 1.54 (ddq, overlapped by $\mathrm{H}_{2} \mathrm{O}, J=14.5,1.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}$, $4 \alpha-\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.44 (ddq, $J=14.5,7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}, 4 \alpha-$ $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.28\left(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 3 \mathrm{H}, 4 \alpha-\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) $177.8,177.0,134.0,130.6,129.2$, 127.6, 125.6, 117.3, 109.4, 107.6, 45.1, 39.3, 33.9, 25.6, 23.8, 12.1; IR (KBr, cm^{-1}) 3370(s), 3342(s), 3095(w), 2969(m), $2925(\mathrm{~m}), \quad 2877(\mathrm{~m}), \quad 2856(\mathrm{~m}), \quad 1769(\mathrm{~m}), \quad 1698(\mathrm{~s}), \quad 1600(\mathrm{w})$, $1495(\mathrm{~m}), \quad 1463(\mathrm{w}), \quad 1445(\mathrm{w}), \quad 1390(\mathrm{~m}), \quad 1358(\mathrm{~m}), \quad 1308(\mathrm{w})$, 1274(w), 1183(s), $1149(\mathrm{~m}), \quad 1090(\mathrm{~m}), \quad 1066(\mathrm{w}), \quad 1017(\mathrm{w})$, 768(m), 715(m); HRMS m/z ($\mathrm{M}+\mathrm{Na}^{+}$) calcd. 351.0872, found 351.0871. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{2}$: C, $65.75 ; \mathrm{H}$, 5.21; N, 8.52. Found: C, 65.58; H, 5.09; N, 8.69.

2-(4-Bromophenyl)-4 α-ethyl-3a $\alpha, 4 \beta, 5,8 b \alpha$-tetrahydro- $2 H$, 6H-pyrrolo[3,4-e]indole-1,3-dione (35). Method B with vinylpyrrole 5a and maleimide 10k gave 35 ($523 \mathrm{mg}, 35 \%$) as a cream-colored powder: mp 193-194 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right) 7.88$ (bs, $\left.1 \mathrm{H}, 6-\mathrm{H}\right), 7.55(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph})$, 7.16 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 6.69(\mathrm{dd}, J=2.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}$, $7-\mathrm{H}), 6.35(\mathrm{dd}, J=2.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 4.06$ (ddd, $J=7.5$, $1.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha-\mathrm{H}$), 3.29 (ddd, $J=7.8,3.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}$, $3 \mathrm{a} \alpha-\mathrm{H}$), 2.78 (ddd, $J=15.6,5.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}, 5 \beta-\mathrm{H}$), $2.59-$ $2.65(\mathrm{~m}, 1 \mathrm{H}, 4 \beta-\mathrm{H}), 2.53$ (dd, $J=16.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}, 5 \alpha-\mathrm{H}$, see $3 \mathrm{a} \alpha-\mathrm{H}$ and $8 \mathrm{~b} \alpha-\mathrm{H}$), 1.53 (ddq, overlapped by $\mathrm{H}_{2} \mathrm{O}, J=14.0$, $7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}, 4 \alpha-\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.44(\mathrm{ddq}, J=14.0,7.5,7.5$ $\mathrm{Hz}, 1 \mathrm{H}, 4 \alpha-\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.01 (dd, $J=7.4,7.4 \mathrm{~Hz}, 3 \mathrm{H}, 4 \alpha-$ $\mathrm{CH}_{2} \mathrm{CH}_{3}$) ; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) $177.8,176.9,132.2$, 131.1, 127.9, 125.6, 122.0, 117.3, 109.4, 107.6, 45.2, 39.3, $33.9,25.6,23.8,12.1 ;$ IR (KBr, cm^{-1}) 3364(s), 3341(s), 3092(w), 2963(m), 2924(m), 2875(m), 2860(m), 1771(w), 1699(s), $1599(\mathrm{w}), \quad 1492(\mathrm{~m}), \quad 1463(\mathrm{w}), \quad 1444(\mathrm{w}), \quad 1389(\mathrm{~m})$, 1358(w), 1307(w), 1274(w), 1184(s), 1148(m), 1069(m), 1015(m), 935(w), 829(w), 783(w), 767(m), 714(m); HRMS m/ $z\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. 395.0366, found 395.0363. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O}_{2}$: C, 57.92; H, 4.59; N, 7.51. Found: C, 57.71; H, 4.54; N, 7.59.

4 α-Ethyl-2-(4-nitrophenyl)-3a $, 4 \beta, 5,8 b \alpha-$ tetrahydro- $2 \mathrm{H}, 6 \mathrm{H}$ -pyrrolo[3,4-elindole-1,3-dione (36). Method B with vinylpyrrole

5a and maleimide 101 gave $\mathbf{3 6}(611 \mathrm{mg}, 45 \%)$ as a cream-colored powder: $\mathrm{mp} 145-146^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) $8.29(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.92$ (bs, 1H, 6-H), 7.57 (d, $J=$ $9.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 6.71$ (dd, $J=2.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.35$ (dd, $J=2.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 4.11$ (ddd, $J=7.9,1.4,1.4$ $\mathrm{Hz}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha-\mathrm{H}$), 3.34 (ddd, $J=7.7,3.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a} \alpha-\mathrm{H}$), 2.80 (ddd, $J=15.6,5.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}, 5 \beta-\mathrm{H}), 2.61-2.70(\mathrm{~m}$, $1 \mathrm{H}, 4 \beta-\mathrm{H}), 2.56(\mathrm{dd}, J=15.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}, 5 \alpha-\mathrm{H}$, see $3 \mathrm{a} \alpha-\mathrm{H}$ and $8 \mathrm{~b} \alpha-\mathrm{H}), 1.39-1.63\left(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.02(\mathrm{dd}, J=7.2$, $7.2 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) $177.3,176.4,146.7,137.8,126.7,125.6,124.3,117.5,109.1$, $107.5,45.2,39.3,33.8,25.5,23.8,12.1$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ 3375(bm), 3115(w), 2960(m), 2929(w), 2873(w), 1771(w), 1704(s), 1611(w), 1598(w), 1519(m), 1499(m), 1460(w), $1384(\mathrm{~m}), 1348(\mathrm{~m}), 1297(\mathrm{w}), 1193(\mathrm{~m}), 1170(\mathrm{~m}), 1147(\mathrm{~m})$, 1105(w), 1067(w), 1019(w), 851(w), 782(w), 743(m), 717(m); HRMS m/z $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}$: 362.1112, found 362.1114 .
4 α-n-Pentyl-2-phenyl-3ac, 4 $\beta, 5,8 b \alpha$-tetrahydro-2H,6H-pyr-rolo[3,4-e]indole-1,3-dione (37). Method B with vinylpyrrole 5b and maleimide 10c gave $37(404 \mathrm{mg}, 30 \%)$ as a light-brown powder: mp 208-209 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, 反) 7.90 (bs, 1H, 6-H), 7.40-7.46 (m, 2H, Ph), 7.32-7.37 (m, 1H, Ph), $7.22-7.27$ (m, 2H, Ph), 6.68 (dd, $J=2.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.37$ (dd, $J=2.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 4.07$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha-\mathrm{H})$, 3.28 (ddd, $J=8.0,3.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a} \alpha-\mathrm{H}$), 2.79 (ddd, $J=15.5$, $5.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 5 \beta-\mathrm{H}), 2.67-2.75(\mathrm{~m}, 1 \mathrm{H}, 4 \beta-\mathrm{H}), 2.50(\mathrm{dd}, J=$ $15.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}, 5 \alpha-\mathrm{H}$, see $3 \mathrm{a} \alpha-\mathrm{H}$), $1.25-1.52$ (m, $8 \mathrm{H}, 4 \alpha-$ $\left.\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\right), 0.90\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, 4 \alpha-\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 178.0,177.3,132.1,129.0,128.3,126.4$, $125.6,117.2,109.6,107.6,45.4,39.3,32.7,32.2,31.8,27.3$, 24.3, 22.7, 14.1; IR (KBr, cm ${ }^{-1}$) 3361(bs), 3066(w), 2953(m), 2926(s), 2855(m), 1766(w), 1708(s), 1598(w), 1497(m), 1457(w), 1380(s), 1291(w), 1187(m), 1150(w), 1090(w), 1072(w), 742(w); HRMS m/z ($\mathrm{M}+\mathrm{Na}^{+}$) calcd. 359.1731, found 359.1734. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 74.97; H , 7.19; N, 8.33. Found: C, 74.72; H, 6.93; N, 8.22.

4 β-Ethyl-2-phenyl-3a $\alpha, 4 \alpha, 5,8 b \alpha$-tetrahydro- $2 \mathrm{H}, 6 \mathrm{H}$-pyrrolo [3,4-e]indole-1,3-dione (38). Method B with vinylpyrrole 6 and maleimide 10c gave 38 ($483 \mathrm{mg}, 41 \%$) as a cream-colored powder: $\mathrm{mp} 182-183^{\circ} \mathrm{C}$; $\mathrm{maj} / \mathrm{min}=12: 1 ;{ }^{1} \mathrm{H}$ NMR $(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 7.89$ (bs, 1H, 6-H), 7.41 (dd, $J=7.8,7.8 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ph}), 7.32-7.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 7.20(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph})$, 6.67 (dd, $J=2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.36(\mathrm{dd}, J=2.8,2.8 \mathrm{~Hz}$, $1 \mathrm{H}, 8-\mathrm{H}$), 4.11 (ddd, $J=7.5,1.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha-\mathrm{H}$), 3.46 (ddd, $J=7.3,3.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a} \alpha-\mathrm{H}$), 2.74 (dd, $J=15.8,4.3$ $\mathrm{Hz}, 1 \mathrm{H}, 5 \alpha-\mathrm{H}$, see $3 \mathrm{a} \alpha-\mathrm{H}$ and $8 \mathrm{~b} \alpha-\mathrm{H}$), 2.51 (ddd, $J=15.0$, $11.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, 5 \beta-\mathrm{H}), 2.08-2.15(\mathrm{~m}, 1 \mathrm{H}, 4 \alpha-\mathrm{H}), 2.05$ (ddq, overlapped by $\left.4 \alpha-\mathrm{H}, J=13.1,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}, 4 \beta-\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 1.95 (ddq, $J=13.1,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}, 4 \beta-\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.07(\mathrm{dd}, J$ $\left.=7.5,7.5 \mathrm{~Hz}, 3 \mathrm{H}, 4 \beta-\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, §) $177.25,177.20,132.0,129.0,128.3,127.5,126.5,117.4$, $111.0,107.4,44.1,42.0,37.3,25.5,25.2,12.6$; IR (KBr, cm^{-1}) $\quad 3369(\mathrm{bs}), \quad 3112(\mathrm{w}), \quad 3053(\mathrm{~m}), \quad 2958(\mathrm{~m}), \quad 2925(\mathrm{~m})$, 2895(m), 2871(m), 2840(w), 1768(m), 1706(w), 1595(m), 1553(w), 1497(m), 1455(m), 1384(s), 1316(w), 1294(m), 1268(w), 1194(s), 1153(m), 1137(m), 1089(w), 1059(m), 1026(w), 994(w), 910(w), 817(w), 719(s); HRMS m/z (M + Na^{+}) calcd. 317.1261, found 317.1262. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 73.45 ; H, 6.16; N, 9.52. Found: C, $73.21 ; \mathrm{H}$, 6.13; $\mathrm{N}, 9.72$.

2-Benzyl-5 β-(1-benzyl-2,5-dioxopyrrolidin-3-yl)-3ax,4,5, $8 b \alpha-$ tetrahydro-2H,6H-pyrrolo[3,4-e]indole-1,3-dione (52). Method A with vinylpyrrole $\mathbf{4}$ and maleimide 10b gave 52 (421 mg , 45%) as a light-brown powder: $\mathrm{mp} 212-213^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 10.58(\mathrm{bs}, 1 \mathrm{H}, 6-\mathrm{H}), 7.32-7.42(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph})$, $7.18-7.26(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 6.76(\mathrm{dd}, J=2.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H})$, $6.34(\mathrm{dd}, J=2.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 4.74\left(\mathrm{AA}^{\prime} \mathrm{d}, J=14.1\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Bn}), 4.69\left(\mathrm{AA}^{\prime} \mathrm{d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}\right), 4.59\left(\mathrm{AA}^{\prime} \mathrm{d}\right.$, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}), 4.52\left(\mathrm{AA}^{\prime} \mathrm{d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}\right)$, 4.02 (dd, $J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha-\mathrm{H}$), 3.32 (ddd, $J=7.9$, $4.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a} \alpha-\mathrm{H}$), 3.01 (ddd, $J=9.4,9.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}$, $1^{\prime}-\mathrm{H}$), 2.93 (dd, overlapped by $1^{\prime}-\mathrm{H}, J=17.3,9.6 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-$ H), 2.83-2.95 (m, overlapped by $\left.2^{\prime}-\mathrm{H}, 1 \mathrm{H}, 5 \alpha-\mathrm{H}\right), 2.77$ (dd, overlapped by $5 \alpha-\mathrm{H}, J=17.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}$), 2.54 (ddd, J $=13.3,3.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}, 4 \beta-\mathrm{H}), 1.58(\mathrm{ddd}, J=13.3,11.5,4.9$ $\mathrm{Hz}, 1 \mathrm{H}, 4 \alpha-\mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, δ) 180.0, 178.2, 177.7, 174.7, 135.8, 135.3, 129.0, 128.9, 128.7, 128.4, 128.3, $127.9,127.3,118.3,111.8,107.2,44.6,42.9,42.3,40.1,40.0$, 33.0, 31.5, 26.6; IR (KBr, cm ${ }^{-1}$) 3446(w), 3329(bs), 3062(w), 3033(w), 2924(m), 2854(w), 1772(m), 1702(s), 1586(w), 1495(w), 1453(w), 1433(m), 1398(s), 1341(m), 1314(m), 1292(w), 1167(s), 1119(w), 1083(w), 714(m), 696(m); HRMS $m / z\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. 490.1738, found 490.1745. Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, $71.93 ; \mathrm{H}, 5.39 ; \mathrm{N}, 8.99$. Found: C, 71.97; H, 5.44; N, 8.70.

2-(4-Ethylphenyl)-5 β-(1-(4-ethylphenyl)-2,5-dioxopyrrolidin-3-yl)-3a $\alpha, 4,5 \alpha, 8 b \alpha-$ tetrahydro-2H,6H-pyrrolo[3,4-e]indole-1,3dione (53). Method A with vinylpyrrole 4 and maleimide 10d gave $53(228 \mathrm{mg}, 23 \%)$ as a light-brown powder: $\mathrm{mp} 173-$ $174^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 10.52(\mathrm{bs}, 1 \mathrm{H}, 6-\mathrm{H})$, 7.35 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph})$, $7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph})$, 6.75 (dd, $J=2.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.39(\mathrm{dd}, J=2.7,2.7 \mathrm{~Hz}$, $1 \mathrm{H}, 8-\mathrm{H}$), 4.19 (dd, $J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha-\mathrm{H}), 3.57$ (ddd, J $=8.0,4.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a} \alpha-\mathrm{H}), 3.24(\mathrm{ddd}, J=9.1,9.1,6.2$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{1}^{\prime}-\mathrm{H}\right), 3.13-3.23\left(\mathrm{~m}\right.$, overlapped by $\left.1^{\prime}-\mathrm{H}, 1 \mathrm{H}, 5 \alpha-\mathrm{H}\right)$, 3.11 (dd, overlapped by $5 \alpha-\mathrm{H}, J=17.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}$), 2.98 (dd, $\left.J=17.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 2.73$ (ddd, $J=12.9$, $3.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}, 4 \beta-\mathrm{H}$), 2.72 (q, overlapped by $4 \beta-\mathrm{H}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.66 (q, overlapped by $\mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.75 (ddd, $J=13.2,10.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}, 4 \alpha-$ H), $1.28\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) 179.7, 177.7, 177.1, 174.2, 145.6, 144.8, 129.4, 129.0, 128.9, 128.6, 127.3, $126.4,126.2,118.4,111.8,107.3,44.8,40.4,40.2,33.2,31.6$, 28.7, 28.6, 26.6, 15.5, 15.4; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) $3353(\mathrm{bs})$, 3122(w), 3103(w), 3038(w), 2964(m), 2930(m), 2872(w), 1777(m), 1711(s), 1580(w), 1514(m), 1485(w), 1459(w), 1440(w), 1390(s), 1294(w), 1282(w), 1179(s), 1117(m), 1064(w), 832(m), 797(w), 768(w), 731(m); HRMS $m / z(M+$ Na^{+}) calcd. 518.2051, found 518.2069. Anal. Calcd. for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 72.71 ; H, 5.90 ; N, 8.48. Found: C, 73.00 ; H, 6.19; N, 8.34.

2-(4-Isopropylphenyl)-5 β-(1-(4-isopropylphenyl)-2,5-diox-opyrrolidin-3-yl)-3a⿱, 4,5 $5,8 b \alpha$-tetrahydro-2H,6H-pyrrolo[3,4-e] indole-1,3-dione (54). Method A with vinylpyrrole 4 and maleimide 10e gave 54 ($304 \mathrm{mg}, \mathbf{2 9 \%}$) as a light-brown powder: mp $148-150{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) $10.45(\mathrm{bs}, 1 \mathrm{H}$, $6-\mathrm{H}), 7.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{Ph}), 7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, Ph), $6.70(\mathrm{dd}, J=2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.38(\mathrm{dd}, J=2.7$,
$2.7 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}$), 4.17 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha$), 3.56 (ddd, J $=7.7,4.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a} \alpha), 3.24$ (ddd, $J=8.8,8.8,6.1 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 2.85-3.25\left(\mathrm{~m}\right.$, overlapped by $1^{\prime}-\mathrm{H}, 5 \mathrm{H}, 2^{\prime}-\mathrm{H} \times 2$ and $5 \alpha-\mathrm{H}$ and $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \times 2\right), 2.69(\mathrm{ddd}, J=13.4,3.8,3.8$ $\mathrm{Hz}, 1 \mathrm{H}, 4 \beta-\mathrm{H}$), 1.72 (ddd, $J=13.0,10.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}, 4 \alpha-\mathrm{H}$), $1.29\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.24(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) 179.7, 177.8, $177.2,174.4,150.1,149.3,129.4,129.0,127.6,127.3,127.2$, $126.4,126.1,118.4,111.8,107.3,44.6,40.4,40.2,35.04$, $34.97,33.1,31.5,26.4,24.0 ; \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3354(\mathrm{bs})$, 3039(w), 2960(s), 2928(m), 2871(m), 1779(m), 1708(s), 1574(w), 1514(m), 1461(m), 1385(s), 1281(w), 1168(s), $1114(\mathrm{~m}), 1059(\mathrm{~m}), 831(\mathrm{~m}), 732(\mathrm{~m}), 693(\mathrm{~m}), 659(\mathrm{~m})$; HRMS $m / z\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. 546.2364, found 546.2377. Anal. Calcd. for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, $73.40 ; \mathrm{H}, 6.35$; N, 8.02. Found: C, 73.18; H, 6.52; N, 8.04.

2-(4-Phenoxyphenyl)-5 β-(1-(4-phenoxyphenyl)-2,5-dioxo-pyrrolidin-3-yl)-3a $, 4,5 \alpha, 8 b \alpha$-tetrahydro-2H,6H-pyrrolo[3,4-e] indole-1,3-dione (55). Method A with vinylpyrrole 4 and maleimide 10h gave 55 ($474 \mathrm{mg}, 38 \%$) as a cream-colored powder: $\mathrm{mp} 133-135^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) 10.51 (bs, $1 \mathrm{H}, 6-\mathrm{H}), 7.33-7.42(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.01-7.26(\mathrm{~m}, 14 \mathrm{H}, \mathrm{Ph})$, 6.76 (dd, $J=2.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.39$ (dd, $J=2.6,2.6 \mathrm{~Hz}$, $1 \mathrm{H}, 8-\mathrm{H}$), 4.20 (dd, $J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha-\mathrm{H}), 3.58$ (ddd, J $=8.0,4.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a} \alpha-\mathrm{H}), 3.13-3.26(\mathrm{~m}, 1 \mathrm{H}, 5 \alpha-\mathrm{H}), 3.25$ (ddd, overlapped by $5 \alpha-\mathrm{H}, J=9.2,9.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}$), 3.14 (dd, overlapped by $5 \alpha-\mathrm{H}, J=17.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}$), 3.00 (dd, $\left.J=17.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 2.74$ (ddd, $J=13.3$, $4.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}, 4 \beta-\mathrm{H}$), 1.76 (ddd, $J=13.1,11.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}$, $4 \alpha-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) 179.7, 177.7, 177.1, $174.2,158.2,157.3,156.5,156.2,130.1,130.0,128.0,127.8$, $127.3,126.6,125.9,124.3,124.0,119.9,119.5,118.8,118.5$, $111.8,107.4,44.7,40.4,40.2,33.2,31.6,26.5$; IR (KBr, $\left.\mathrm{cm}^{-1}\right) \quad 3346(\mathrm{bs}), \quad 3061(\mathrm{~m}), \quad 2922(\mathrm{~m}), \quad 1778(\mathrm{~m}), \quad 1718(\mathrm{~s})$, $1588(\mathrm{~m}), \quad 1506(\mathrm{~s}), \quad 1487(\mathrm{~s}), \quad 1388(\mathrm{~m}), \quad 1286(\mathrm{~m}), \quad 1244(\mathrm{~s})$, $1196(\mathrm{~m}), \quad 1113(\mathrm{~m}), \quad 1067(\mathrm{~m}), \quad 1017(\mathrm{w}), \quad 875(\mathrm{~m}), \quad 845(\mathrm{~m})$, $770(\mathrm{~m})$, $695(\mathrm{~m})$; HRMS $m / z\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. 646.1949, found 646.1951. Anal. Calcd. for $\mathrm{C}_{38} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6}$: C, 73.18; H, 4.69; N, 6.74. Found: C, 73.40; H, 4.87; N, 6.61.

2-Benzyl-5 α-(1-benzyl-2,5-dioxopyrrolidin-3-yl)-3ax,4,5, $8 b \alpha-$ tetrahydro-2H,6H-pyrrolo[3,4-elindole-1,3-dione (56) and 2-ben-zyl-5 β-(1-benzyl-2,5-dioxopyrrolidin-3-yl)-3ax,4,5, $8 b \alpha-$ tetrahy-dro-2H,6H-pyrrolo[3,4-e]indole-1,3-dione (52). Method A with vinylpyrrole $\mathbf{4}$ and maleimide 10b followed by fractional recrystallizations from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /petroleum ether gave 56 (168 $\mathrm{mg}, 18 \%$) as a light-brown powder, with a maximum purity of 56:52 in a 5:1 molar ratio, mass calculated from ${ }^{1} \mathrm{H}$ NMR, spectroscopic data for 56 only reported: mp $86-91^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 7.36-7.41(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.27-7.28$ $(\mathrm{m}, 6 \mathrm{H}, \mathrm{Ph}), 7.02(\mathrm{bs}, 1 \mathrm{H}, 6-\mathrm{H}), 6.24(\mathrm{dd}, J=2.6,2.6 \mathrm{~Hz}$, $1 \mathrm{H}, 7-\mathrm{H}), 6.15(\mathrm{dd}, J=2.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 4.79\left(\mathrm{AA}^{\prime} \mathrm{d}, J\right.$ $=13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}), 4.62\left(\mathrm{AA}^{\prime} \mathrm{d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}\right), 4.61$ (AA' d, overlapped, $J=14.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}), 4.54\left(\mathrm{AA}^{\prime} \mathrm{d}, J=\right.$ $14.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}), 3.89(\mathrm{dd}, J=7.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha-\mathrm{H}), 3.63$ (dddd, $J=7.5,5.4,3.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}, 5 \beta-\mathrm{H}), 3.17$ (ddd, $J=$ $8.0,8.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a} \alpha-\mathrm{H}$), 3.13 (ddd, overlapped by $5 \beta-\mathrm{H}, J$ $\left.=8.9,5.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 2.74(\mathrm{dd}, J=18.0,9.3 \mathrm{~Hz}, 1 \mathrm{H}$, $2^{\prime}-\mathrm{H}$ syn to $\left.1^{\prime}-\mathrm{H}\right), 2.26(\mathrm{ddd}, J=13.5,7.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}, 4 \beta-\mathrm{H})$, 2.22 (dd, overlapped by $4 \beta-\mathrm{H}, J=18.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}$ anti to $1^{\prime}-\mathrm{H}$), 1.88 (ddd, $J=13.6,7.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}, 4 \alpha-\mathrm{H}$); IR (KBr, cm^{-1}) $3382(\mathrm{bm}), 3063(\mathrm{w}), 3033(\mathrm{~m}), 2922(\mathrm{~s}), 2853(\mathrm{~m})$,

1773(m), 1702(s), 1585(w), 1495(w), 1455(w), 1432(m), 1397(m), 1341(m), 1314(w), 1166(m), 1083(w), 1065(w), 723(w), 699(m); HRMS m/z (M + Na+) calcd. 490.1738, found 490.1739. Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 71.93; H, 5.39; N, 8.99. Found: C, 71.87; H, 5.52; N, 8.73.

2-(4-Ethylphenyl)-5 α-(1-(4-ethylphenyl)-2,5-dioxopyrrolidin-3-yl)-3a $, 4,5 \beta, 8 b \alpha$-tetrahydro-2H,6H-pyrrolo[3,4-e]indole-1,3dione (57). Method A with vinylpyrrole 4 and maleimide 10d gave $57(50 \mathrm{mg}, 5 \%)$ as a cream-colored powder: $\mathrm{mp} 252-$ $254^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.\delta\right) 7.96$ (bs, $1 \mathrm{H}, 6-\mathrm{H}$), 7.34 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.29$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$), $7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.15$ (d, overlapped, $J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ph}$), 6.71 (dd, $J=2.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.48$ (dd, $J=$ $2.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 4.14(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha-\mathrm{H}), 3.92$ (ddd, $J=5.9,5.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}, 5 \beta-\mathrm{H}$), 3.40 (ddd, $J=9.2,6.8$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}$), 3.39 (ddd, overlapped by $1^{\prime}-\mathrm{H}, J=9.6$, $7.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a} \alpha-\mathrm{H}$), 2.95 (dd, $J=17.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}$ syn to $\left.1^{\prime}-\mathrm{H}\right), 2.71\left(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.68(\mathrm{q}$, overlapped by $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.52(\mathrm{dd}, J=$ $17.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}$ anti to $1^{\prime}-\mathrm{H}$), 2.42 (ddd, $J=13.9,9.2$, $5.9 \mathrm{~Hz}, 1 \mathrm{H}, 4 \beta-\mathrm{H}$), 2.21 (ddd, $J=13.7,5.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}, 4 \alpha-$ $\mathrm{H}), 1.27\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.25$ (t, overlapped by $\mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right) 179.1,177.9,176.1,174.9,145.5,144.9,129.3$, 129.1, 129.0, 128.7, 126.23, 126.18, 124.6, 119.4, 113.5, $108.4,45.4,39.8,38.9,31.3,30.3,28.7,28.4,15.5$; IR (KBr, $\left.\mathrm{cm}^{-1}\right) \quad 3462(\mathrm{w}), \quad 3364(\mathrm{bs}), \quad 3037(\mathrm{w}), \quad 2965(\mathrm{~m}), \quad 2929(\mathrm{~m})$, 2871(w), 1776(m), 1705(s), 1514(m), 1488(w), 1458(w), 1386(s), 1354(m), 1313(w), 1301(w), 1223(w), 1163(s), 1190(s), 1110(w), 1100(w), 1083(w), 770(m), 720(m); HRMS $m / z\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. 518.2051, found 518.2059. Anal. Calcd. for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, $72.71 ; \mathrm{H}, 5.90 ; \mathrm{N}, 8.48$. Found: C, 72.99 ; H, 5.93; N, 8.70.

2-(4-Isopropylphenyl)-5 α-(1-(4-isopropylphenyl)-2,5-dioxo-pyrrolidin-3-yl)-3a $, 4,5 \beta, 8 b \alpha-$ tetrahydro-2H,6H-pyrrolo[3,4-e] indole-1,3-dione (58). Method A with vinylpyrrole 4 and maleimide 10e gave $58(84 \mathrm{mg}, 8 \%)$ as a cream-colored powder: $\mathrm{mp} 280-282^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, δ) 7.94 (bs, 1 H , $6-\mathrm{H}), 7.37$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, Ph), 7.17 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{Ph}), 6.71(\mathrm{dd}, J=2.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.48(\mathrm{dd}, J=2.6$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 4.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha-\mathrm{H}), 3.93$ (ddd, $J=5.6,5.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}, 5 \beta-\mathrm{H}), 3.40(\mathrm{ddd}, J=9.2,6.6,3.3$ $\mathrm{Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}$), 3.40 (ddd, overlapped, $J=9.3,8.0,5.6 \mathrm{~Hz}$, $1 \mathrm{H}, 3 \alpha-\mathrm{H}$), 2.97 (septet, $\left.J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.95(\mathrm{dd}$, overlapped by $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \times 2, J=17.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}$ syn to $\left.1^{\prime}-\mathrm{H}\right), 2.94\left(\mathrm{dd}\right.$, overlapped by $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ and $2^{\prime}-\mathrm{H}, J=6.9$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.53\left(\mathrm{dd}, J=17.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right.$ anti to $1^{\prime}-\mathrm{H}$), 2.43 (ddd, $J=14.0,9.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}, 4 \beta-\mathrm{H}$), 2.21 (ddd, $J=14.0,5.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}, 4 \alpha-\mathrm{H}), 1.28(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $\left.6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.26$ (d, overlapped by $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, J=7.2$ $\left.\mathrm{Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) 179.1, $177.9,176.1,175.0,150.0,149.5,129.3,129.1,127.6,127.3$, 126.2, 126.1, 124.6, 119.4, 113.5, 108.4, 45.4, 39.8, 38.9, 34.0, $31.3,30.3,28.4,24.0$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3365(bs), 3038(w), 2961(s), 2927(m), 2899(m), 1776(m), 1708(s), 1514(m), 1460(w), 1387(s), 1355(m), 1306(w), 1187(s), 1160(s), 1105(m), 1085(w), 1055(m), 832(m), 727(m); HRMS m/z (M $+\mathrm{Na}^{+}$) calcd. 546.2364, found 546.2373. Anal. Calcd. for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, $73.40 ; \mathrm{H}, 6.35$; N, 8.02. Found: C, 73.22 ; H, 6.51 ; N, 7.96 .

2-(4-Phenoxyphenyl)-5 α-(1-(4-phenoxyphenyl)-2,5-dioxopyr-rolidin-3-yl)-3ax,4,5 ${ }^{2}, 8 \mathrm{~b} \alpha$-tetrahydro-2H,6H-pyrrolo[3,4-e]indole-1,3-dione (59). Method A with vinylpyrrole 4 and maleimide 10h gave 59 ($100 \mathrm{mg}, 8 \%$) as a white powder: mp 267$268^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) 7.94 (bs, $1 \mathrm{H}, 6-\mathrm{H}$), 7.34-7.43 (m, 4H, Ph), 7.03-7.24 (m, 14H, Ph), 6.72 (dd, $J=$ $2.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.48(\mathrm{dd}, J=2.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H})$, 4.15 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~b} \alpha-\mathrm{H}), 3.93$ (ddd, $J=5.6,5.6,3.4$ $\mathrm{Hz}, 1 \mathrm{H}, 5 \beta-\mathrm{H}$), 3.41 (ddd, $J=9.0,6.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}$), 3.41 (ddd, overlapped by $1^{\prime}-\mathrm{H}, J=9.1,7.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a} \alpha-$ H), 2.96 (dd, $J=17.7,9.0 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}$ syn to $\left.1^{\prime}-\mathrm{H}\right), 2.53$ (dd, 17.7, $6.6 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}$ anti to $1^{\prime}-\mathrm{H}$), 2.43 (ddd, $J=14.2$, $8.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}, 4 \beta-\mathrm{H}$), 2.21 (ddd, $J=14.0,5.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}$, $4 \alpha-\mathrm{H}$) ${ }^{13}{ }^{3} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}, δ) 179.0, 178.2, 177.2, $176.1,157.1,156.60,156.59,130.8,129.4,128.0,127.9$, 127.2, 124.6, 119.75, 119.69, 118.9, 118.4, 111.5, 107.2, 43.4, ~ 40 (obscured by DMSO), 38.4, 33.2, 32.7, 28.5; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) 179.01, 178.95, 177.8, 174.8, 157.6, $154.6,152.8,130.1,130.0,127.82,127.78,126.2,126.0$, 124.6, 124.3, 124.0, 119.8, 119.6, 119.4, 118.8, 113.5, 108.4, $45.4,39.7,38.9,31.3,30.3,28.3$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3358(bs), 3053(w), 2994(W), 2950(w), 2915(m), 2856(w), 1770(m), 1711(s), 1589(m), 1506(m), 1489(m), 1456(w), 1386(m), 1350(w), 1294(w), 1244(s), 1193(m), 1155(m), 1102(m), 1072(m), 1019(w), 880(w), 800(w), 760(m), 730(m), 699(m); HRMS $m / z\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. 646.1949, found 646.1958. Anal. Calcd. for $\mathrm{C}_{38} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6}$: C, 73.18; H, 4.69; $\mathrm{N}, 6.74$. Found: C, 72.96 ; H, 4.80; N, 6.58.

2-Dimethylamino-2H,6H-pyrrolo[3,4-e]indole-1,3-dione (60). Method D with adduct $\mathbf{1 1}$ gave $\mathbf{6 0}(55 \mathrm{mg}, 64 \%)$ as orange crystals: mp $237-238^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}, δ) $11.89(\mathrm{bs}, 1 \mathrm{H}, 6-\mathrm{H}), 7.79(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}$ and $5-\mathrm{H}), 7.49(\mathrm{dd}, J=$ $8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}$), 6.79 (ddd, $J=2.1,2.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 8$ H), 2.89 ($\left.\mathrm{s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}, δ) 168.6, 168.4, 141.3, 132.5, 122.8, 122.5, 121.3, 117.3, 115.4, 100.2, 45.0; IR (film, cm^{-1}) 3251(bs), 2940(m), 2870(m), 1756(m), 1704(s), $\quad 1448(\mathrm{~m}), \quad 1440(\mathrm{w}), \quad 1357(\mathrm{~m}), \quad 1274(\mathrm{w})$, 1142(w), 1104(m), 740(m); HRMS m/z (M + Na ${ }^{+}$) calcd. 252.0744, found 252.0748. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 62.87; H, 4.84; N, 18.33. Found: C, 62.68; H, 4.81; N, 18.17.

2-Benzyl-2H,6H-pyrrolo[3,4-e]indole-1,3-dione (61). Method C with adduct $\mathbf{1 2}$ gave $\mathbf{6 1}(47 \mathrm{mg}, 45 \%)$ as a yellow powder: mp 195-196 ${ }^{\circ}$ C; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}, δ) 11.99 (bs, $1 \mathrm{H}, 6-\mathrm{H}), 7.81(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.79-7.81(\mathrm{~m}$, overlapped by $4-\mathrm{H}, 1 \mathrm{H}, 7-\mathrm{H}$), 7.56 ($\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$), 7.23-7.37 (m, 5H, Ph), 6.81 (ddd, $J=3.0,2.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 8-$ $\mathrm{H}), 4.76$ (s, 2H, Bn); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) 169.7, 169.4, 140.4, 137.2, 129.7, 128.7, 128.6, 127.7, 125.2, 124.0, 123.2, 116.4, 115.8, 102.1, 41.4; ${ }^{13}$ C NMR (75 MHz , DMSO$\left.d_{6}, \delta\right) 169.7,169.4,141.3,137.8,132.6,129.1,127.8$ (two peaks overlapped), 124.3, 123.0, 115.2, 113.8, 100.3, ~40 (obscured by DMSO); IR (KBr, cm ${ }^{-1}$) 3275(bs), 3108(w), 3057(w), 3035(w), 2941(w), 1756(m), 1687(s), 1590(w), 1508(w), 1492(w), 1455(w), 1433(m), 1398(m), 1368(m), 1340(m), 1272(w), 1062(m), 764(w), 745(m), 675(m); HRMS $m / z\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. 299.0792, found 299.0794. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 73.90; H, 4.38; N, 10.14. Found: C, 73.63; H, 4.28; N, 9.90.

2-Phenyl-2H,6H-pyrrolo[3,4-e]indole-1,3-dione (62). Method D with adduct 13 gave $\mathbf{6 2}(66 \mathrm{mg}, 67 \%)$ as bright-yellow crystals: mp $265-266^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , acetone- $\left.d_{6}, \delta\right) 11.16$
(bs, 1H, 6-H), 7.94 (dd, $J=8.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), 7.82 (dd, J $=2.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 7.55-$ $7.60(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.40-7.44(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 7.01$ (ddd, $J=3.2$, $2.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}, δ) $168.9,168.6,141.3,132.9,132.5,129.3,128.1,127.8,124.1$, 123.1, 123.0, 117.5, 115.8, 100.5; IR (film, cm^{-1}) 3288(bs), 2953(m), 2870(m), 1753(m), 1696(s), 1620(w), 1590(w), 1495(w), 1490(w), 1365(m), 1265(w), 1227(w), 1153(w), 1061(w), 753(m); HRMS $m / z\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. 285.0635, found 285.0641. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 73.27; H , 3.84 ; N, 10.68. Found: C, 73.00 ; H, 3.73; N, 10.82.

2-(4-Ethylphenyl)-2H,6H-pyrrolo[3,4-e]indole-1,3-dione (63). Method C with adduct $\mathbf{1 4}$ gave $\mathbf{6 3}(51 \mathrm{mg}, 47 \%)$ as a yellow powder: mp $172-173^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, δ) 8.82 (bs, 1H, 6-H), 7.76 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 7.71$ (dd, $J=$ $8.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.52(\mathrm{dd}, J=3.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H})$, 7.40 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.34(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph})$, 7.13 (ddd, $J=3.1,2.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 2.72(\mathrm{q}, J=7.7 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.29\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}, δ) 169.1, 168.7, 143.9, 141.3, 132.6, 130.4, 128.7, 127.8, 124.2, 123.1, 123.0, 117.5, 115.8, 100.4, 28.4, 16.2; $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3417(\mathrm{bs}), 3319(\mathrm{w}), 2963(\mathrm{w})$, 2929(w), 1760(m), 1706(s), 1629(w), 1592(w), 1517(m), 1460(w), 1426(w), 1380(s), 1366(s), 1274(w), 1228(w), 1088(m), 1068(w), 823(w), 800(w), 759(m), 745(m); HRMS $m / z\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. 313.0948, found 313.0942. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 74.47; H, 4.86; N, 9.65. Found: C, 74.35; H, 4.94; N, 9.51.

2-(4-Isopropylphenyl)-2H,6H-pyrrolo[3,4-e]indole-1,3-dione (64). Method C with adduct 15 gave $64(70 \mathrm{mg}, 61 \%)$ as yellow needle-like crystals: mp $178-179^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right) 8.68$ (bs, $1 \mathrm{H}, 6-\mathrm{H}$), 7.78 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$), $7.73(\mathrm{dd}, J=8.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.55(\mathrm{dd}, J=2.4,0.9 \mathrm{~Hz}$, $1 \mathrm{H}, 7-\mathrm{H}), 7.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ph}$), 7.15 (ddd, $J=3.1,2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}$), 2.98 (septet, $\left.J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.30(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}, δ) 169.1, 168.7, $148.4,141.3,132.6,130.5,127.8,127.2,124.2,123.1,123.0$, 117.6, 115.8, 108.5, 100.5, 39.2, 24.4; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ 3419(s), $\quad 2960(\mathrm{~m}), \quad 2925(\mathrm{~s}), \quad 2855(\mathrm{~m}), \quad 1758(\mathrm{~m}), \quad 1711(\mathrm{~s})$, 1516(w), 1457(w), 1427(w), 1378(m), 1367(m), 1315(w), 1274(m), 1227(w), 1155(w), 1120(m), 1070(w), 714(w); HRMS $m / z\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. 327.1105, found 327.1113. Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 74.98; H, 5.30; $\mathrm{N}, 9.20$. Found: C, 74.71; H, 5.12; N, 9.07.

2-(4-Methoxyphenyl)-2H,6H-pyrrolo[3,4-elindole-1,3-dione (65). Method D with adduct 16 gave $65(70 \mathrm{mg}, 64 \%)$ as brown crystals: mp $220-221^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , acetone$\left.d_{6}, \delta\right) 11.12(\mathrm{bs}, 1 \mathrm{H}, 6-\mathrm{H}), 7.93(\mathrm{dd}, J=8.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-$ H), $7.81(\mathrm{dd}, J=2.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.66(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}, 4-\mathrm{H}), 7.44(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.09(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ph}), 6.98-7.02(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , acetone $-d_{6}, \delta$) 168.7, 168.4, 159.0, 141.2, $131.2,128.5,125.6,124.6,123.4,123.2,116.8,115.4,114.0$, 100.7, 55.0; IR (film, cm^{-1}) 3300(bs), 2920(m), 2810(m), 1758(w), 1706(s), 1517(m), 1441(w), 1369(m), 1250(m), 1155(w), 1117(w), 743(m); HRMS m/z ($\mathrm{M}+\mathrm{Na}^{+}$) calcd. 315.0741, found 315.0743. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 69.86; H, 4.14; N, 9.58. Found: C, 69.67; H, 4.10; N, 9.39.

2-(4-Phenoxyphenyl)-2H,6H-pyrrolo[3,4-e]indole-1,3-dione (66). Method C with adduct 17 gave $66(51 \mathrm{mg}, 38 \%)$ as
bright yellow crystals: mp $193-194^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right) 8.72$ (bs, $\left.1 \mathrm{H}, 6-\mathrm{H}\right), 7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H})$, 7.73 (dd, $J=8.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.56$ (dd, $J=3.2,2.6 \mathrm{~Hz}$, 1H, 7-H), 7.36-7.48 (m, 4H, Ph), 7.08-7.19 (m, 6H, 8-H, Ph); ${ }^{13}$ C NMR (75 MHz , DMSO- d_{6}, δ) 169.0, 168.7, 156.8, 156.6, $141.3,132.6,130.7,129.6,127.9,124.4,124.2,123.1,123.0$, $119.6,119.0,117.6,115.8,100.5$; IR (KBr, cm ${ }^{-1}$) 3316(bm), 3065(w), 1764(m), 1703(s), 1629(w), 1588(w), 1506(m), $1487(\mathrm{~m}), \quad 1460(\mathrm{w}), \quad 1433(\mathrm{w}), \quad 1383(\mathrm{~m}), \quad 1370(\mathrm{~m}), \quad 1241(\mathrm{~s})$, 1151(m), 1105(m), 1089(m), 1070(m), 1005(w), 870(w), 822(w), 744(m), 691(m); HRMS m/z (M + Na ${ }^{+}$) calcd. 377.0897, found 377.0883. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 74.57; H, 3.98; N, 7.91. Found: C, 74.44; H, 3.93; N, 7.54.

2-Dimethylamino-6-methyl-2H,6H-pyrrolo[3,4-elindole-1,3dione (67). Method D with adduct 18 gave 67 ($60 \mathrm{mg}, 66 \%$) as yellow crystals: mp $201-202^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , ace-tone- $\left.d_{6}, \delta\right) 7.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 7.67(\mathrm{~d}, J=3.3 \mathrm{~Hz}$, $1 \mathrm{H}, 7-\mathrm{H}), 7.57$ (dd, $J=8.1,0.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 6.88(\mathrm{dd}, J=$ $3.0,0.6 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}$), $3.99\left(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right), 2.99(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) $168.8,168.5,141.2$, 134.6, 123.5, 122.7, 122.0, 115.8, 114.2, 100.7, 45.2, 33.4; IR (film, cm^{-1}) 3102(m), 2969(m), 2877(m), 2854(w), 1763(m), 1706(s), 1509(w), 1498(w), 1375(w), 1357(m), 1296(w), 1168(w), 1092(w), 1023(w); HRMS m/z (M + Na ${ }^{+}$) calcd. 266.0901, found 266.0892. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 64.19; H, 5.39; N, 17.27. Found: C, 64.46; H, 5.30; N, 17.27.

6-Methyl-2-phenyl-2H,6H-pyrrolo[3,4-elindole-1,3-dione (68). Method D with adduct $\mathbf{1 9}$ gave $\mathbf{6 8}(74 \mathrm{mg}, 71 \%)$ as bright or-ange-yellow crystals: mp $214-215^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta\right) 7.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 7.71(\mathrm{dd}, J=8.4$, $0.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.41-7.58(\mathrm{~m}, 6 \mathrm{H}, 7-\mathrm{H}$ and Ph$), 7.03(\mathrm{dd}, J$ $=3.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 3.93\left(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta\right) 168.8,168.3,141.3,134.9,132.6,129.0$, $127.8,127.6,126.9,124.3,123.6,115.7,114.6,100.4,33.5$; IR (film, cm^{-1}) $3125(\mathrm{~m}), 2900(\mathrm{w}), 1759(\mathrm{~m}), 1710(\mathrm{~s}), 1595(\mathrm{~m})$, 1512(m), 1490(m), 1453(w), 1377(s), 1361(s), 1294(m), 1223(w), 1171(w), 1094(w), 1063(w), 744(m); HRMS m/z (M $+\mathrm{Na}^{+}$) calcd. 299.0792, found 299.0792. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $73.90 ; \mathrm{H}, 4.38$; N, 10.14. Found: C, 73.71 ; H, 4.28; N, 10.14.

2-(4-Methoxyphenyl)-6-methyl-2H,6H-pyrrolo[3,4-e]indole-1,3-dione (69). Method D with adduct 20 gave 69 (76 mg , 66%) as bright-yellow crystals: mp $236-237^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta\right) 7.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 7.70(\mathrm{dd}, J=$ $8.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.44(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.38$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.06(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.01(\mathrm{dd}, J$ $=3.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 3.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.89(\mathrm{~s}, 3 \mathrm{H}, 6-$ CH_{3}); ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}, δ) 169.1, 168.7, 159.1, $141.4,136.6,129.2,125.4,124.2,123.3,123.2,115.9,115.6$, 114.6, 99.8, 55.9, 33.6; IR (film, cm^{-1}) 3125(w), 2988(m), 2870(w), 1753(m), 1709(s), 1509(s), 1388(m), 1366(w), 1352(w), $1299(\mathrm{~m}), \quad 1249(\mathrm{~s}), \quad 1170(\mathrm{w}), \quad 1092(\mathrm{w}), \quad 806(\mathrm{w})$, 704(m); HRMS m/z (M $+\mathrm{Na}^{+}$) calcd. 329.0897, found 329.0908. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, $70.58 ; \mathrm{H}, 4.61$; N , 9.15. Found: C, 70.40 ; H, 4.59 ; N, 9.01 .

2-Dimethylamino-5,6-dimethyl-2H,6H-pyrrolo[3,4-e]indole-1,3-dione (70). Method D with adduct 21 gave 70 (68 mg , 70%) as bright-yellow crystals: mp $226-227^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 7.33(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 7.21(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}$, $7-\mathrm{H}), 6.95(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 4.13\left(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right), 3.05$ (s, $\left.6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.87\left(\mathrm{~s}, 3 \mathrm{H}, 5-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz ,

DMSO- $\left.d_{6}, \delta\right) 168.5,168.3,139.6,137.8,129.0,124.1,122.8$, 119.6, 117.4, 99.2, 45.0, 37.3, 20.1; IR (film, cm^{-1}) $3120(\mathrm{~m})$, 2998(m), 2963(m), 2875(m), 2815(m), 1757(s), 1709(s), 1596(w), 1517(m), 1477(w), 1448(m), 1348(s), 1321(m), 1188(w), 1172(m), 1105(w), 1015(w), 760(m), 740(m); HRMS $m / z\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. 280.1057, found 280.1055. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, $65.35 ; \mathrm{H}, 5.88 ; \mathrm{N}, 16.33$. Found: C, 65.55 ; H, 5.99; N, 16.50.

5,6-Dimethyl-2-phenyl-2H,6H-pyrrolo[3,4-e]indole-1,3-dione (71). Method D with adduct 22 gave 71 ($79 \mathrm{mg}, 72 \%$) as bright orange-yellow crystals: mp $225-226^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 7.48-7.53(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.45(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H})$, $7.38-7.41(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 7.24(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.01(\mathrm{~d}$, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 4.16\left(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right), 2.91(\mathrm{~s}, 3 \mathrm{H}, 5-$ CH_{3}); ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}, δ) 168.8, 168.4, 139.7, 138.0, 132.9, 129.4, 129.3, 128.0, 127.7, 124.6, 124.4, 121.3, $117.9,99.5,37.3,20.1$; IR (film, cm^{-1}) $3120(\mathrm{~m}), 2940(\mathrm{~m})$, 1752(m), 1706(s), 1596(w), 1517(w), 1501(m), 1453(w), 1405(w), 1376(m), 1356(m), 1321(w), 1226(w), 1102(w), 753(m); HRMS m/z $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. 313.0948, found 313.0945. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $74.47 ; \mathrm{H}, 4.86$; N , 9.65. Found: C, 74.70; H, 4.63; N, 9.80.

2-(4-Methoxyphenyl)-5,6-dimethyl-2H,6H-pyrrolo[3,4-e]indole-1,3-dione (72). Method D with adduct 23 gave 72 (79 mg , 66%) as bright-red crystals: mp 229-230 ${ }^{\circ}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta\right) 7.43(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 7.36(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{Ph}), 7.31(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.05(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{Ph}), 6.97(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 4.17\left(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right), 3.88$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.94\left(\mathrm{~s}, 3 \mathrm{H}, 5-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- $\left.d_{6}, \delta\right) 169.1,168.7,159.0,139.6,137.92,137.87$, $129.2,125.4,124.6,124.4,121.1,117.8,114.6,99.5,55.9$, 37.3, 20.1; IR (film, cm^{-1}) 3104(m), 2938(m), 2844(m), 1751(m), 1698(s), 1512(s), 1461(m), 1384(m), 1356(m), 1327(w), 1299(w), 1249(m), 1171(m), 1090(w), 1074(w), 1031(w), 802(w); HRMS m/z (M + Na^{+}) calcd. 343.1054, found 343.1069. Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 71.24; H , 5.03; N, 8.74. Found: C, 71.62; H, 5.10; N, 8.55.

2-Dimethylamino-4-methyl-2H,6H-pyrrolo[3,4-e]indole-1,3dione (73). Method D with adduct 24 gave 73 ($52 \mathrm{mg}, 57 \%$) as yellow crystals: mp $255-256^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right) 8.70(\mathrm{bs}, 1 \mathrm{H}, 6-\mathrm{H}), 7.41-7.45(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}$ and $7-$ H), 7.03 (ddd, $J=3.2,2.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 3.07(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.77\left(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}, δ) $169.2,168.1,141.3,131.8,129.3,121.6$, $121.5,119.5,118.3,100.0,44.9,18.2$; IR (film, cm^{-1}) 3250(bs), 2995(m), 2880(m), 2871(m), 1748(m), 1697(s), 1446(m), 1402(w), 1390(w), 1350(m), 1101(w), 762(m); HRMS $m / z\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. 266.0901, found 266.0907. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 64.19; H, 5.39; N, 17.27. Found: C, 63.96; H, 5.34; N, 17.08.

4-Methyl-2-phenyl-2H,6H-pyrrolo[3,4-e]indole-1,3-dione (74). Method D with adduct 25 gave $74(63 \mathrm{mg}, 61 \%)$ as yellow crystals: mp $305-306{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , acetone $-d_{6}, \delta$) 10.93 (bs, 1H, 6-H), 7.72 (dd, $J=2.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}$), 7.67 (dq, $J=0.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.50-7.60(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.40-$ $7.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 6.94$ (ddd, $J=3.6,2.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H})$, 2.77 (d, $J=0.6 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO$\left.d_{6}, \delta\right) 169.0,168.4,141.4,132.9,131.9,129.7,129.3,128.0$, 127.9, 123.2, 121.9, 121.2, 118.5, 100.3, 18.4; IR (film, cm^{-1}) 3288(bs), $2900(\mathrm{~m}), \quad 2880(\mathrm{~m}), 1764(\mathrm{w}), \quad 1752(\mathrm{~m}), \quad 1693(\mathrm{~s})$, 1640(w), $\quad 1496(\mathrm{~m}), \quad 1392(\mathrm{~m}), \quad 1368(\mathrm{~m}), \quad 1167(\mathrm{w}), \quad 763(\mathrm{~m}) ;$

HRMS m/z ($\mathrm{M}+\mathrm{Na}^{+}$) calcd. 299.0792, found 299.0785. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $73.90 ; \mathrm{H}, 4.38 ; \mathrm{N}, 10.14$. Found: C, 73.71 ; H, 4.54; N, 9.86 .

2-(4-Methoxyphenyl)-4-methyl-2H,6H-pyrrolo[3,4-e]indole-1,3-dione (75). Method D with adduct 26 gave 75 (68 mg , 59%) as yellow crystals: mp $207-208^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , acetone $\left.-d_{6}, \delta\right) 10.91(\mathrm{bs}, 1 \mathrm{H}, 6-\mathrm{H}), 7.71(\mathrm{dd}, J=3.0,2.6 \mathrm{~Hz}$, $1 \mathrm{H}, 7-\mathrm{H}), 7.66(\mathrm{dq}, J=0.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.43(\mathrm{~d}, J=$ $9.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.08(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 6.94$ (ddd, $J=$ $3.2,2.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.76(\mathrm{~d}, J=$ $\left.0.9 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}, δ) 169.6, $168.6,159.0,141.4,131.7,129.6,129.3,125.5,123.2,121.9$, $121.2,118.4,114.5,100.3,55.8,18.4 ;$ IR (film, cm^{-1}) 3331(bs), 2989(m), 2810(m), 1756(m), 1702(s), 1518(m), $1400(\mathrm{~m}), \quad 1301(\mathrm{w}), \quad 1256(\mathrm{~m}), \quad 1168(\mathrm{w}), \quad 1117(\mathrm{w}), \quad 760(\mathrm{~m})$; HRMS m/z (M $+\mathrm{Na}^{+}$) calcd. 329.0897, found 329.0905. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 70.58; H, 4.86; N, 8.98. Found: C, 70.77; H, 4.86; N, 8.98.

2-Dimethylamino-4,6-dimethyl-2H,6H-pyrrolo[3,4-e]indole-1,3-dione (76). Method D with adduct 27 gave 76 (54 mg , 56%) as light-yellow crystals: mp $179-180^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 7.31$ (dq, $\left.J=1.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}\right), 7.25(\mathrm{~d}$, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.95(\mathrm{dd}, J=3.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H})$, $3.84\left(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right), 3.07\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.78(\mathrm{~d}, J=0.9$ $\left.\mathrm{Hz}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) 169.4, 168.3, $141.3,134.0,130.3,122.3,122.2,119.8,115.6,100.5,45.1$, 33.3, 18.5; IR (film, cm^{-1}) 3125(m), 3100(m), 2945(m), 3877(m), 3851(m), 1759(m), 1704(s), 1632(w), 1513(m), 1470(w), 1446(w), 1403(w), 1375(m), 1353(m), 1294(w), 1099(m), 758(w); HRMS m/z (M + Na ${ }^{+}$) calcd. 280.1057, found 280.1057. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 65.35; H, 5.88; N, 16.33. Found: C, 65.11; H, 5.71; N, 16.38.

4,6-Dimethyl-2-phenyl-2H,6H-pyrrolo[3,4-e]indole-1,3-dione (77). Method D with adduct 28 gave 77 ($68 \mathrm{mg}, 62 \%$) as bright orange-yellow crystals: mp $181-182^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right) 7.45-7.55(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.35-7.41(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}$ and $\mathrm{Ph}), 7.28(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.99(\mathrm{~d}, J=2.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}$, $8-\mathrm{H}), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right), 2.84\left(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) 169.3, 168.3, 141.4, 134.1, 132.4, $130.6,129.0,127.5,126.7,123.9,122.5,121.4,115.8,100.7$, 33.3, 18.6; IR (film, cm^{-1}) 3120(m), 2900(m), 2860(m), 1754(m), 1710(S), $\quad 1595(\mathrm{w}), \quad 1492(\mathrm{~m}), \quad 1375(\mathrm{~s}), \quad 1357(\mathrm{~s})$, 1294(w), 1168(w); HRMS m/z (M + Na ${ }^{+}$) calcd. 313.0948, found 313.0951. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 74.47; H , 4.86; N, 9.65. Found: C, 74.28; H, 4.61; N, 9.60.

2-(4-Methoxyphenyl)-4,6-dimethyl-2H,6H-pyrrolo[3,4-e]indole-1,3-dione (78). Method D with adduct 29 gave 78 (73 mg , 61%) as bright-yellow crystals: mp $243-244{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta\right) 7.43(\mathrm{dq}, J=0.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.37-$ $7.40(\mathrm{~m}, 3 \mathrm{H}, 7-\mathrm{H}$ and Ph$), 7.06(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 6.95$ $(\mathrm{dd}, J=3.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right.$ or $\left.\mathrm{OCH}_{3}\right)$, $3.87\left(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right.$ or $\left.\mathrm{OCH}_{3}\right), 2.83(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}, 4-$ CH_{3}); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \delta$) 169.6, 168.5, 159.1, $141.5,136.0,129.6,129.3,125.4,123.5,122.1,121.3,117.0$, $114.6,99.6,55.9,33.5,18.5$; IR (film, cm^{-1}) $3120(\mathrm{~m})$, 2999(m), 2940(w), 2860(w), 1751(m), 1706(s), 1632(w), 1612(w), 1510(s), 1480(w), 1438(w), 1402(m), 1382(m), 1362(w), 1345(m), 1290(m), 1244(s), 1167(m), 1113(w), 1089(w), 1028(w); HRMS m/z (M + Na ${ }^{+}$) calcd. 343.1054, found 343.1064. Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 71.24; H , 5.03; $\mathrm{N}, 8.74$. Found: $\mathrm{C}, 71.41 ; \mathrm{H}, 4.87 ; \mathrm{N}, 8.54$.

4-Ethyl-2-phenyl-2H,6H-pyrrolo[3,4-e]indole-1,3-dione (79). Method D with adduct 30 gave 79 ($48 \mathrm{mg}, 44 \%$) as lightbrown crystals: mp $261-262{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$\left.d_{6}, \delta\right) 11.85(\mathrm{bs}, 1 \mathrm{H}, 6-\mathrm{H}), 7.81(\mathrm{ddd}, J=2.0,1.0,1.0 \mathrm{~Hz}$, $1 \mathrm{H}, 8-\mathrm{H}), 7.75(\mathrm{dd}, J=3.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.64(\mathrm{~d}, J=$ $0.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.39-7.55(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 3.15(\mathrm{q}, J=7.5 \mathrm{~Hz}$, $\left.2 \mathrm{H}, 4-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.28\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$, $\left.\delta\right) ~ 169.1, ~ 168.4, ~ 141.6, ~ 136.5$, $132.9,132.1,129.3,128.1,128.0,123.5,122.0,120.7,117.2$, 100.3, 24.9, 16.1; IR (KBr, cm^{-1}) 3300(bs), 2970(m), 1763(m), 1683(s), 1637(m), 1592(w), 1496(m), 1456(w), 1368(s), 1163(w), 1101(w), 1062(w), 848(w), 760(m); HRMS $m / z\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. 313.0948, found 313.0945. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 74.47; H, 4.86; N, 9.65. Found: C, 74.61; H, 4.88; N, 9.48.

4-Ethyl-2-(4-ethylphenyl)-2H,6H-pyrrolo[3,4-e]indole-1,3dione (80). Method C with adduct 31 gave 80 ($63 \mathrm{mg}, 53 \%$) as orange crystals: mp $238-239^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO- $\left.d_{6}, \delta\right) 11.83(\mathrm{bs}, 1 \mathrm{H}, 6-\mathrm{H}), 7.73(\mathrm{dd}, J=2.4,0.9 \mathrm{~Hz}$, $1 \mathrm{H}, 7-\mathrm{H}), 7.63(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.36-7.39(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{Ph}), 6.80$ (ddd, $J=2.9,1.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 3.14(\mathrm{q}, J=$ $\left.7.4 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.67\left(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{3}\right)$, $1.27\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.23(\mathrm{t}, J=7.7,3 \mathrm{H}$, $\left.\mathrm{PhCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}, δ) 169.3, 168.5, 143.7, 141.5, 136.4, 132.1, 130.4, 128.6, 127.9, 123.5, 121.9, $120.7,117.1,100.3,28.4,24.9,16.2,16.1$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ 3307(bs), 2964(m), 2929(w), 2871(w), 1757(m), 1696(s), 1633(w), 1514(m), 1458(m), 1368(s), 1294(m), 1167(m), 1117(w), 1095(m), 1066(w), 832(w), 764(m), 726(w); HRMS $m / z\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. 341.1261, found 341.1260. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 75.45; H, 5.70; N, 8.80. Found: C, 75.70; H, 5.58; N, 8.20.

4-Ethyl-2-(4-hydroxyphenyl)-2H,6H-pyrrolo[3,4-e]indole-1,3dione (81). Method D with adduct 32 gave 81 ($17 \mathrm{mg}, 15 \%$) as yellow crystals: mp $265-267^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}, $\left.\delta\right) 11.80(\mathrm{bs}, 1 \mathrm{H}, 6-\mathrm{H}), 9.69(\mathrm{bs}, 1 \mathrm{H}, \mathrm{Ph}-\mathrm{OH})$, $7.69-7.74(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 7.58-7.62(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 7.18(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 6.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 6.75-6.79(\mathrm{~m}$, $1 \mathrm{H}, 8-\mathrm{H}), 3.11\left(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.25(\mathrm{t}, J=$ $\left.7.3 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \delta$) $169.6,168.8,157.4,141.5,136.3,132.0,129.5,123.8,123.5$, $121.9,120.7,117.0,115.8,100.2,24.9,16.1$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ 3464(m), 3311(bs), 3115(w), 2966(m), 2926(m), 1751(m), 1683(s), 1636(w), 1597(w), 1515(s), 1455(w), 1379(s), 1295(w), 1269(m), 1206(m), 1162(m), 1114(m), 1087(w), 834(w), 765(w); HRMS $m / z \quad\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}: 329.0897$, found 329.0906.

2-(4-Chlorophenyl)-4-ethyl-2H,6H-pyrrolo[3,4-e]indole-1,3dione (82). Method D with adduct 34 gave 82 ($40 \mathrm{mg}, 33 \%$) as yellow crystals: mp $219-220^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right) 8.56$ (bs, $\left.1 \mathrm{H}, 6-\mathrm{H}\right), 7.53$ (app. s, $\left.1 \mathrm{H}, 5-\mathrm{H}\right), 7.47-$ $7.49(\mathrm{~m}, 5 \mathrm{H}, 7-\mathrm{H}$ and Ph$), 7.09$ (app. dd, $J=2.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}$, $8-\mathrm{H}), 3.25\left(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.36(\mathrm{t}, J=7.7$ $\left.\mathrm{Hz}, 3 \mathrm{H}, 4-\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- $\left.d_{6}, \delta\right) 11.86$ (bs, 1H, 6-H), $7.64(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.59(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.50(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.49(\mathrm{dd}, J=3.1$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.80$ (ddd, $J=3.0,1.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}$), $3.14\left(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$, $4-\mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \delta$) 168.9, 168.1, $141.6,136.5,132.4,132.2,131.8,129.6,129.3,123.4,122.0$, $120.7,117.2,100.3,24.9,16.0$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3308(bs),

3105(w), 2968(m), 2933(w), 2880(w), 1762(m), 1707(s), 1635(w), $1495(\mathrm{~m}), \quad 1459(\mathrm{w}), \quad 1409(\mathrm{~m}), \quad 1376(\mathrm{~s}), \quad 1313(\mathrm{w})$, 1295(m), 1241(w), 1209(w), 1167(w), 1109(w), 1092(m), 1066(w), 1016(w), 852(w), 830(m), 807(m), 781(m), 753(m), 717(w); HRMS $m / z\left(M+\mathrm{Na}^{+}\right)$calcd. for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2}$: 347.0559 , found 347.0557 .

2-(4-Bromophenyl)-4-ethyl-2H,6H-pyrrolo[3,4-e]indole-1,3dione (83). Method D with adduct 35 gave 83 ($50 \mathrm{mg}, 36 \%$) as yellow crystals: mp $246-247^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right) 8.53(\mathrm{bs}, 1 \mathrm{H}, 6-\mathrm{H}), 7.63(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph})$, $7.53(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.48(\mathrm{dd}, J=3.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}$, $7-\mathrm{H}), 7.42$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$), 7.10 (ddd, $J=3.2,2.2$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 3.25\left(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.37$ (t, $J=7.7 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{CH}_{2} \mathrm{CH}_{3}$) ; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$\left.d_{6}, \delta\right) 11.86$ (bs, $1 \mathrm{H}, 6-\mathrm{H}$), 7.75 (dd, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}$), $7.72(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.65(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$, $7.44(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 6.80(\mathrm{ddd}, J=3.0,2.0,0.9 \mathrm{~Hz}$, $1 \mathrm{H}, 8-\mathrm{H}), 3.14\left(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.27(\mathrm{t}, J=$ $\left.7.5 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}, δ) $168.8,168.1,141.6,136.5,132.2,129.9,123.4,122.0,120.9$, $120.69,120.65,117.2,105.0,100.3,24.9,16.1$; IR (KBr, cm^{-1}) $3307(\mathrm{bs}), \quad 3100(\mathrm{w}), \quad 3082(\mathrm{w}), \quad 2966(\mathrm{~m}), \quad 2878(\mathrm{w})$, 1763(m), 1707(s), 1637(m), 1493(m), 1460(w), 1367(s), 1314(w), 1298(w), 1243(w), 1209(w), 1167(w), 1122(w), 1108(w), 1090(w), 1074(m), 1012(w), 980(w), 820(m), 790(m), 740(m); HRMS m/z (M + Na ${ }^{+}$) calcd. 391.0053, found 391.0044. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2}$: C, 58.56; H , 3.55; N, 7.59. Found: C, 58.59; H, 3.41; N, 7.46.

4-Ethyl-2-(4-nitrophenyl)-2H,6H-pyrrolo[3,4-e]indole-1,3dione (84). Method D with adduct 36 gave 84 ($35 \mathrm{mg}, 28 \%$) as light-orange crystals: mp $296-297{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- $\left.d_{6}, \delta\right) 11.90(\mathrm{bs}, 1 \mathrm{H}, 6-\mathrm{H}), 8.39(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Ph}), 7.83$ (d, $J=9.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$), 7.77 (dd, $J=2.9,2.9 \mathrm{~Hz}$, $1 \mathrm{H}, 7-\mathrm{H}$), 7.68 (d, $J=0.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 6.84$ (ddd, $J=3.2$, $2.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 3.16\left(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.29\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO-d6, δ) 168.4, 167.7, 146.1, 141.7, 138.9, 136.7, 132.4, 127.9, 124.6, 123.4, 122.1, 120.6, 117.6, 100.4, 25.0, 16.1; IR (KBr, cm^{-1}) 3378(bs), 3120(w), 2970(w), 2933(w), 2879(w), 1765(m), 1718(s), 1631(w), 1591(m), 1516(m), 1498(m), 1471(w), 1411(w), 1376(m), 1318(s), 1213(m), 1185(m), 1165(w), 1718(s), 1631(w), 1591(m), 1516(m), 1498(m), $1471(\mathrm{~m}), \quad 1411(\mathrm{w}), \quad 1376(\mathrm{~m}), \quad 1318(\mathrm{~s}), \quad 1213(\mathrm{~m}), \quad 1185(\mathrm{~m})$, $1165(\mathrm{~m}), \quad 1110(\mathrm{~m}), \quad 1086(\mathrm{~m}), \quad 1051(\mathrm{~m}), \quad 851(\mathrm{~m}), \quad 781(\mathrm{~m})$, 750(m); HRMS m/z $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. 358.0799, found 358.0800. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, $64.47 ; \mathrm{H}, 3.91$; N , 12.53. Found: C, 64.10; H, 4.25; N, 12.16.
(+)-(R)-2-(1,3-Dioxo-2H,6H-pyrrolo[3,4-e]indol-2-yl)-2-phenylethyl acetate (85). Method A with vinylpyrrole 4 and maleimide 10 m gave adduct 39 , which with method E gave 85 ($641 \mathrm{mg}, 46 \%$) as dark-yellow crystals: $\mathrm{mp} 62-63^{\circ} \mathrm{C} ;[\alpha]^{23}{ }_{\mathrm{D}}$ +2.1 (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta\right) 8.88$ (bs, $1 \mathrm{H}, 6-\mathrm{H}$), 7.74 (dd, $J=8.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.64(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 7.56-7.61(\mathrm{~m}, 3 \mathrm{H}, 7-\mathrm{H}$ and Ph$)$, $7.31-$ 7.42 (m, 3H, Ph), 7.04 (ddd, $J=3.2,2.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}$), 5.63 (dd, $\left.J=9.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.13(\mathrm{dd}, J=11.1,9.9$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 4.83$ (dd, $\left.J=11.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 2.02$ (s, $3 \mathrm{H}, \mathrm{Ac}$) ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) $171.2,170.2,169.8$, $140.9,136.7,130.5,128.9,128.5,128.1,124.5,123.4,123.2$, $116.4,116.1,101.5,63.0,53.2,21.0$; IR (film, cm^{-1}) 3360 (bs), $1749(\mathrm{~m}), \quad 1698(\mathrm{~s}), \quad 1629(\mathrm{w}), \quad 1458(\mathrm{w}), \quad 1350(\mathrm{~s}), \quad 1236(\mathrm{~m})$,

1041(w), 750(m), 699(m); HRMS m/z (M + Na ${ }^{+}$) calcd. 371.1003, found 371.1009. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 68.96; H, 4.63; N, 8.04. Found: C, 68.80; H, 4.62; N, 8.00.
(R)-2-(4-Methyl-1,3-dioxo-2H,6H-pyrrolo[3,4-e]indol-2-yl)-2-phenylethyl acetate (86). Method A with vinylpyrrole 3b and maleimide 10 m gave adduct 40 , which with method E gave 86 ($391 \mathrm{mg}, 27 \%$) as light-yellow crystals: $\mathrm{mp} 158-$ $159^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta\right) 8.85$ (bs, $1 \mathrm{H}, 6-\mathrm{H}$), $7.55-7.59(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.33-7.46(\mathrm{~m}, 5 \mathrm{H}, 5-\mathrm{H}, 7-\mathrm{H}$ and Ph$)$, 6.95 (ddd, $J=3.1,2.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}$), 5.65 (dd, $J=9.6$, $\left.6.0 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.16\left(\mathrm{dd}, J=11.1,9.6 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 4.86$ (dd, $\left.J=6.0,11.1 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 2.73(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}, 4-$ CH_{3}), $2.01(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, δ) 171.2 , 170.4, 169.6, 140.8, 137.0, 130.7, 129.7, 128.9, 128.4, 128.2, 123.6, 121.9, 121.7, 117.6, 101.5, 63.1, 53.0, 21.0, 18.3; IR (film, cm^{-1}) 3370(bs), 1747(m), 1696(s), 1637(m), 1457(w), 1391(m), 1350(m), 1238(m), 1043(w), 767(m), 738(w), 700(m); HRMS m/z $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. 385.1160, found 385.1161. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, $69.60 ; \mathrm{H}, 5.01$; N , 7.73. Found: C, 69.51 ; H, 4.98 ; N, 7.52 .
(+)-(R)-2-(6-Methyl-1,3-dioxo-2H,6H-pyrrolo[3,4-e]indol-2-yl)-2-phenylethyl acetate (87). Method A with vinylpyrrole $\mathbf{3 d}$ and maleimide $\mathbf{1 0 m}$ gave adduct $\mathbf{4 1}$, which with method E gave 87 ($638 \mathrm{mg}, 44 \%$) as light-brown crystals: $\mathrm{mp} 52-53^{\circ} \mathrm{C}$; $[\alpha]^{23}{ }_{\mathrm{D}}+3.6\left(c 2.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) 7.66 (dd, $J=8.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.57-7.61$ (m, 2H, Ph), 7.58 (d, overlapped, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 7.28-7.40(\mathrm{~m}, 4 \mathrm{H}$, $7-\mathrm{H}, \mathrm{Ph}), 6.98$ (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 5.65(\mathrm{dd}, J=10.2$, $\left.5.7 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.16\left(\mathrm{dd}, J=10.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right)$, 4.87 (dd, $\left.J=10.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right)$, 2.01 (s, $3 \mathrm{H}, \mathrm{Ac}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) 170.8, 169.9, $169.5,141.1,136.8,134.6,128.8,128.4,128.2,124.2,123.6$, $123.5,115.7,114.1,100.1,62.8,53.3,33.4,20.9$; IR (film, cm^{-1}) 3447 (bs), 3108(w), 3063(w), 2950(w), 1741(s), 1703(s), 1626(w), 1511(m), 1457(m), 1352(s), 1295(m), 1232(s), 1042(m), 749(s), 701(s); HRMS m/z $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. 385.1160, found 385.1166. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 69.60; H, 5.01; N, 7.93. Found: C, 69.75; H, 4.89; N, 7.93.
(+)-(R)-2-(5,6-Dimethyl-1,3-dioxo-2H,6H-pyrrolo[3,4-e]indol-2-yl)-2-phenylethyl acetate (88). Method A with vinylpyrrole 3c and maleimide $\mathbf{1 0 m}$ gave adduct $\mathbf{4 2}$, which with method E gave $88(437 \mathrm{mg}, 29 \%)$ as yellow crystals: mp $125-126^{\circ} \mathrm{C}$; $[\alpha]^{23}{ }_{\mathrm{D}}+3.9\left(c 2.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right)$ $7.56-7.59(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.27-7.41(\mathrm{~m}, 4 \mathrm{H}, 4-\mathrm{H}$ and Ph$), 7.20$ (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.94(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 5.60$ (dd, $\left.J=9.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.14(\mathrm{dd}, J=11.1,10.2 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 4.85\left(\mathrm{dd}, J=11.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 4.13(\mathrm{~s}, 3 \mathrm{H}$, $6-\mathrm{CH}_{3}$), $2.87\left(\mathrm{~s}, 3 \mathrm{H}, 5-\mathrm{CH}_{3}\right), 2.00(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 170.8,169.9,169.6,139.6,136.9,136.0$, $128.8,128.3,128.2,127.6,124.8,124.7,121.9,118.2,100.5$, $62.9,53.2,37.3,20.9,20.4$; IR (film, cm^{-1}) $3440(\mathrm{bs})$, 1742(m), 1701(s), 1518(w), 1496(w), 1367(m), 1347(s), 1232(m), 1089(w), 762(w), 750(w), 731(w), 701(w); HRMS $m / z\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. 399.1316, found 399.1328. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, $70.20 ; \mathrm{H}, 5.36 ; \mathrm{N}, 7.44$. Found: C, 70.08 ; H, 5.39; N, 7.29.
(+)-(R)-2-(4,6-Dimethyl-1,3-dioxo-2H,6H-pyrrolo[3,4-e]indol-2-yl)-2-phenylethyl acetate (89). Method A with vinylpyrrole 3 f and maleimide 10 m gave adduct 43 , which with method E gave 89 ($391 \mathrm{mg}, 26 \%$) as brownish-orange crystals: $\mathrm{mp} 163-$ $164^{\circ} \mathrm{C} ;[\alpha]^{23}{ }_{\mathrm{D}}+5.9\left(c 5.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}, \delta\right) 7.57-7.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.27-7.40(\mathrm{~m}, 4 \mathrm{H}, 5-\mathrm{H}$ and $\mathrm{Ph}), 7.25(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.98(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}$, $8-\mathrm{H}), 5.63$ (dd, $\left.J=10.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.15(\mathrm{dd}, J=$ $\left.11.1,10.2 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 4.88$ (dd, $J=11.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-$ H), $3.81\left(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right), 2.77\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right), 2.02(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) $170.8,170.4,169.4,141.2$, 137.0, 134.0, 130.2, 128.8, 128.6, 128.3, 123.8, 122.2, 121.4, $115.5,100.3,62.9,53.0,33.2,21.0,18.4$; IR (film, cm^{-1}) 3440(bm), 2925(w), 1746(s), 1698(s), 1510(w), 1381(m), 1350(s), 1291(w), 1233(m), 1041(w), 763(w), 701(w); HRMS $m / z\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. 399.1316, found 399.1301. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, $70.20 ; \mathrm{H}, 5.36 ; \mathrm{N}, 7.44$. Found: C, 70.31 ; H, 5.49; N, 7.36.
(+)-(R)-2-(4,5,6-Trimethyl-1,3-dioxo-2H,6H-pyrrolo[3,4-e] indol-2-yl)-2-phenylethyl acetate (90). Method A with vinylpyrrole 3 g and maleimide 10 m gave adduct 44 , which with method E gave 90 ($328 \mathrm{mg}, 21 \%$) as yellow crystals: mp 197$198^{\circ} \mathrm{C} ;[\alpha]^{23}{ }_{\mathrm{D}}+4.1\left(c 2.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right) 7.55-7.59(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.28-7.40(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 7.14$ (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.92(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 5.62$ (dd, $\left.J=9.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.14(\mathrm{dd}, J=10.7,9.9 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 4.88\left(\mathrm{dd}, J=11.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 4.12(\mathrm{~s}, 3 \mathrm{H}$, $\left.6-\mathrm{CH}_{3}\right), 2.75\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right.$ or $\left.5-\mathrm{CH}_{3}\right), 2.74\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right.$ or $5-\mathrm{CH}_{3}$), 2.01 (s, 3H, Ac); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) $170.8,169.3,140.0,137.1,136.4,129.4,128.8,128.3,128.2$, $126.8,123.4,122.0,121.3,116.5,100.0,62.9,53.2,38.0,25.8$, 14.5, 13.8; IR (film, cm^{-1}) 3451(bs), 1746(m), 1697(s), 1498(w), 1455(w), 1387(m), 1344(m), 1309(w), 1231(m), 1039(w), 806(w), 766(m), 730(w); HRMS m/z (M + Na ${ }^{+}$) calcd. 413.1473, found 413.1456. Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, $70.75 ; \mathrm{H}, 5.68$; N, 7.17. Found: C, 70.82; H, 5.65; N, 6.96.
(+)-(R)-2-(2-Methoxy-1-phenylethyl)-2H,6H-pyrrolo[3,4-e] indole-1,3-dione (91). Method A with vinylpyrrole 4 and maleimide 10n gave adduct $\mathbf{4 5}$, which with method E gave 91 $(500 \mathrm{mg}, 39 \%)$ as light-yellow crystals: $\mathrm{mp} 63-64^{\circ} \mathrm{C} ;[\alpha]^{23}{ }_{\mathrm{D}}$ +27.0 (c 5.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) 8.75 (bs, $1 \mathrm{H}, 6-\mathrm{H}$), $7.55-7.60(\mathrm{~m}, 4 \mathrm{H}, 4-\mathrm{H}$ and $5-\mathrm{H}$ and Ph), 7.28$7.43(\mathrm{~m}, 4 \mathrm{H}, 7-\mathrm{H}$ and Ph$), 6.98(\mathrm{dd}, J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}, 8-$ H), $5.63\left(\mathrm{dd}, J=10.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 4.69(\mathrm{dd}, J=10.2$, $\left.10.2 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 4.01\left(\mathrm{dd}, J=10.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right)$, 3.47 (s, 3H, OCH_{3}); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) 170.4 , $169.9,140.6,137.5,130.3,128.9,128.4,128.2,124.0,123.1$, $122.8,115.9,115.8,101.5,71.4,58.9,53.8$; IR (film, cm^{-1}) 3402(bs), 1754(m), 1699(s), 1610(m), 1458(w), 1393(w), 1353(s), 1109(w), 750(m), 700(m); HRMS m/z (M + Na ${ }^{+}$) calcd. 343.1054, found 343.1045. Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, $71.24 ; \mathrm{H}, 5.03 ; \mathrm{N}, 8.74$. Found: C, $71.46 ; \mathrm{H}$, 5.14; N, 8.82.
(+)-(R)-2-(2-Methoxy-1-phenylethyl)-4-methyl-2H,6H-pyr-rolo[3,4-e]indole-1,3-dione (92). Method A with vinylpyrrole 3b and maleimide 10 n gave adduct 46 , which with method E gave 92 ($401 \mathrm{mg}, 30 \%$) as dark-yellow crystals: mp 139$140^{\circ} \mathrm{C} ;[\alpha]^{23}{ }_{\mathrm{D}}+14.9$ (c 2.3, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right) 8.68(\mathrm{bs}, 1 \mathrm{H}, 6-\mathrm{H}), 7.57-7.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.28-$ $7.40(\mathrm{~m}, 5 \mathrm{H}, 5-\mathrm{H}$ and $7-\mathrm{H}$ and Ph$), 6.79-6.81(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H})$, 5.62 (dd, $\left.J=10.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 4.77$ (dd, $J=10.2,10.2$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 4.00\left(\mathrm{dd}, J=10.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 3.52(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.65\left(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, 8) $170.4,169.6,140.5,137.9,130.3,129.5$, $128.7,128.6,128.2,128.1,123.3,121.3,117.2,101.1,71.4$,
58.7, 53.3, 18.0; IR (film, cm^{-1}) 3413(bs), 1749(w), 1694(s), 1636(m), 1456(w), 1394(w), 1350(m), 766(w), 699(w); HRMS $m / z\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$: 357.1210, found 357.1211.
(+)-(R)-2-(2-Methoxy-1-phenylethyl)-4,5-dimethyl-2H,6H-pyrrolo[3,4-e]indole-1,3-dione (93). Method A with vinylpyrrole 3 e and maleimide 10 n gave adduct 47, which with method E gave 93 ($362 \mathrm{mg}, 26 \%$) as light-yellow crystals: mp $177-178^{\circ} \mathrm{C} ;[\alpha]^{23}{ }_{\mathrm{D}}+17.6\left(c 0.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2} \delta\right) 8.67$ (bs, $\left.1 \mathrm{H}, 6-\mathrm{H}\right), 7.53-7.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.28-$ $7.41(\mathrm{~m}, 4 \mathrm{H}, 7-\mathrm{H}, \mathrm{Ph}), 6.87(\mathrm{~d}, J=3.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H})$, $5.59\left(\mathrm{dd}, J=9.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 4.60(\mathrm{dd}, J=9.9,9.9$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 4.02$ (dd, $\left.9.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 3.47$ (s, 3 H , OCH_{3}), $2.67\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, 5-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta$) $170.9,169.3,139.9,138.0,129.0,128.6$, $128.1,128.0,127.9,125.4,121.9,120.9,120.5,101.6,71.5$, $58.8,53.9,13.2,13.1$; IR (film, cm^{-1}) 3430(bs), 2900(w), 1747(m), 1693(s), 1650(m), 1394(m), 1352(m), 1092(w), 767(m), 732(m), 699(m); HRMS m/z (M + Na ${ }^{+}$) calcd. 371.1367, found 371.1351. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 72.40; H, 5.79; N, 8.04. Found: C, 72.22; H, 5.74; N, 7.88.
(+)-(R)-2-(2-Methoxy-1-phenylethyl)-6-methyl-2H,6H-pyr-rolo[3,4-e]indole-1,3-dione (94). Method A with vinylpyrrole 3d and maleimide 10 n gave adduct 48 , which with method E gave 94 ($535 \mathrm{mg}, 40 \%$) as light-yellow crystals: mp 123$124^{\circ} \mathrm{C} ;[\alpha]^{23}{ }_{\mathrm{D}}+30.4$ (c 5.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta\right) 7.59-7.62(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}, 5-\mathrm{H}), 7.54-7.58(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{Ph}), 7.28-7.52(\mathrm{~m}, 4 \mathrm{H}, 7-\mathrm{H}$ and Ph$), 6.94(\mathrm{dd}, J=3.3,0.9$ $\mathrm{Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 5.58\left(\mathrm{dd}, J=9.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 4.52(\mathrm{dd}, J$ $\left.=9.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 4.02\left(\mathrm{dd}, J=9.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right)$, $3.89\left(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right), 3.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right) 170.2,169.8,141.0,137.7,134.4,128.7,128.3$, $128.1,124.5,123.9,123.5,115.7,113.9,100.6,71.4,58.9$, 53.9, 33.4; IR (film, cm^{-1}) 3443(bs), 2905(m), 2800(w), 1755(m), 1702(s), 1511(m), 1458(w), 1385(m), 1353(s), 1295(w), 1114(m), 1090(w), 748(s), 700(m); HRMS m/z (M + Na^{+}) calcd. 357.1210, found 357.1200. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, $71.84 ; \mathrm{H}, 5.43$; $\mathrm{N}, 8.38$. Found: C, $71.61 ; \mathrm{H}$, 5.32; N, 8.41.
(+)-(R)-2-(2-Methoxy-1-phenylethyl)-5,6-dimethyl-2H,6H-pyrrolo[3,4-e]indole-1,3-dione (95). Method A with vinylpyrrole 3c and maleimide 10 n gave adduct 49 , which with method E gave 95 ($446 \mathrm{mg}, 32 \%$) as orangish-yellow crystals: mp $157-158^{\circ} \mathrm{C} ;[\alpha]^{23}{ }_{\mathrm{D}}+30.2$ (c 5.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta\right) 7.53-7.58(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.27-7.39(\mathrm{~m}, 4 \mathrm{H}, 4-$ $\mathrm{H}, \mathrm{Ph}), 7.25(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.89(\mathrm{~d}, J=3.3 \mathrm{~Hz}$, $1 \mathrm{H}, 8-\mathrm{H}), 5.54\left(\mathrm{dd}, J=9.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 4.49(\mathrm{dd}, J=$ $\left.9.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 4.12\left(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right), 4.02(\mathrm{dd}, J=9.6$, $\left.6.0 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.88\left(\mathrm{~s}, 3 \mathrm{H}, 5-\mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta\right) 170.0,169.6,139.4,138.1$, 136.0, 128.6, 128.2, 127.9, 127.7, 124.8, 124.4, 121.8, 117.6, 99.9, 71.3, 58.6, 53.6, 37.1, 20.0; IR (film, cm^{-1}) 3440 (bs), 2999(w), 2933(w), 2805(w), 1750(m), 1696(s), 1518(w), 1495(w), 1404(w), 1347(s), 1116(m), 1092(w), 760(w), $750(\mathrm{w}), 730(\mathrm{w}), 701(\mathrm{~m}), 661(\mathrm{~m}) ;$ HRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$ calcd. 371.1367, found 371.1372. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, $72.40 ; \mathrm{H}, 5.79 ; \mathrm{N}, 8.04$. Found: C, 72.56 ; H, 5.93; N, 7.96 .
(+)-(R)-2-(2-Methoxy-1-phenylethyl)-4,6-dimethyl-2H,6H-pyrrolo[3,4-e]indole-1,3-dione (96). Method A with vinylpyrrole $\mathbf{3 f}$ and maleimide $\mathbf{1 0 n}$ gave adduct $\mathbf{5 0}$, which with method

E gave 96 ($404 \mathrm{mg}, 29 \%$) as yellow crystals: $\mathrm{mp} 132-133^{\circ} \mathrm{C}$; $[\alpha]^{23}{ }_{\mathrm{D}}+30.2\left(c 5.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta$) $7.54-7.58(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.30-7.40(\mathrm{~m}, 5 \mathrm{H}, 5-\mathrm{H}$ and $7-\mathrm{H}$ and Ph$)$, 6.88 (dd, $J=3.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 5.57$ (dd, $J=9.3,6.0 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 4.53\left(\mathrm{dd}, J=9.9,9.9 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 4.04(\mathrm{dd}, J=$ $\left.9.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right), 3.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $2.77\left(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right)$ 170.6, 169.6, 141.0, 138.0, 133.7, 129.8, 128.8, 128.4, 128.1, 123.7, 122.0, 121.3, 115.2, 100.1, 71.4, 58.9, 53.7, 33.0, 18.3; IR (film, cm^{-1}) 3442(bs), 2915(w), 2790(w), 1749(m), 1697(s), 1636(m), 1508(w), 1350(m), 1291(w), 1104(w), 762(m), 700(m); HRMS m/z $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. 371.1367, found 371.1381. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, $72.40 ; \mathrm{H}, 5.79$; N , 8.04. Found: C, 72.30 ; H, $5.81 ; \mathrm{N}, 7.84$.
(+)-(R)-2-(2-Methoxy-1-phenylethyl)-4,5,6-trimethyl-2H,6H-pyrrolo[3,4-e]indole-1,3-dione (97). Method A with vinylpyrrole $\mathbf{3 g}$ and maleimide $\mathbf{1 0}$ g gave adduct $\mathbf{5 1}$, which with method E gave 97 ($333 \mathrm{mg}, 23 \%$) as dark-orange crystals: mp $164-165^{\circ} \mathrm{C} ;[\alpha]^{23}{ }_{\mathrm{D}}+26.5$ (c 0.4, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta\right) 7.52-7.58(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.28-7.40(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph})$, 7.17 (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.86(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H})$, 5.56 (dd, $\left.J=9.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 4.50(\mathrm{dd}, J=9.6,9.6$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 4.10\left(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right), 4.04(\mathrm{dd}, J=9.9,6.0 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 3.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.73\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right.$ or $\left.5-\mathrm{CH}_{3}\right)$, $2.72\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right.$ or $\left.5-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta$) $170.9,169.4,139.9,138.2,136.4,129.2,128.5,128.1,127.8$, $126.9,123.2,122.0,121.3,99.5,71.4,58.6,53.3,37.9,14.3$, 13.4; IR (film, cm^{-1}) 3450(bs), 2932(w), 1748(m), 1695(s), 1519(w), 1496(w), 1395(m), 1345(m), 1309(w), 1112(w), $765(\mathrm{~m}), 731(\mathrm{~m}), 700(\mathrm{~m})$; HRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}: 385.1523$, found 385.1518 .
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compounds $\mathbf{3 a}-\mathbf{3 c}, \mathbf{3 e}-3 \mathrm{~g}, \mathbf{5 b}$, 7, 10m, 10n, 11-38, 53-97, the ${ }^{1} \mathrm{H}$ NMR spectrum for compound 52, biological activity data for compounds $\mathbf{6 3}$ and 66 , and X-ray data for 7 in CIF format. This material is available online free of charge (see Supporting Information).

Acknowledgment. N.P.L, L.V., N.F.A, and G.C.G. thank the Wayland E. Noland Research Fund for generous financial support of this project.

REFERENCES AND NOTES

[1] Sundberg, R. J. Indoles; Katritzky, A. R., Meth-Cohn, O., Rees, C. W., Eds.; Academic Press: San Diego, 1996.
[2] Gul, W.; Hamann, M. Life Sci 2005, 78, 442.
[3] (a) Shen, T. Y.; Winter, C. A. Adv Drug Res 1977, 12, 89; (b) Frishman, W. H. N Engl J Med 1983, 308, 940; (c) He, L.; Chang, H.-X.; Chou, T.-C.; Savaraj, N.; Cheng, C. C. Eur J Med Chem 2003, 38, 101; (d) Kuo, C.-C.; Hsieh, H.-P.; Pan, W.-Y.; Chen, C.-P.; Liou, J.-P.; Lee, S.-J.; Chang, Y.-L.; Chen, L.-T.; Chen, C.-T.; Chang, J.-Y. Cancer Res 2004, 64, 4621.
[4] Noland, W. E.; Walhstrom, M. J.; Konkel, M. J.; Brigham, M. E.; Trowbridge, A. G.; Konkel, L. M. C.; Gourneau, R. P.; Scholten, C. A.; Lee, N. H.; Condoluci, J. J.; Gac, T. S.; Mostafaei Pour, M.; Radford, P. M. J Heterocycl Chem 1993, 30, 81.
[5] Noland, W. E.; Lanzatella, N. P.; Sizova, E. P.; Venkatraman, L.; Afanasyev, O. V. J Heterocycl Chem 2009, 46, 503.
[6] (a) Hawkins, S. J.; Ratcliffe, N. M. J Mater Chem 2000, 10, 2057; (b) Teare, G. C.; Ratcliffe, N. M. J Mater Chem 1996, 6,

301; (c) Salmon, M.; Kanazawa, K. K.; Diaz, A. F.; Krounbi, M. J Polym Sci Polym Lett Ed 1982, 20, 187; (d) Lamb, B. S.; Koviac, P. J Polym Sci Polym Lett Ed 1980, 18, 1759; (e) Potts, H. A.; Smith, G. F. J Chem Soc 1957, 4018.
[7] (a) Jones, R. A.; Saliente, T. A.; Arques, J. S. J Chem Soc Perkin Trans11984, 2541; (b) Jones, R. A.; Arques, J. S. Tetrahedron 1981, 37, 1597; (c) Tao, M.; Park, C. H.; Bihovsky, R.; Wells, G. J.; Husten, J.; Ator, M. A.; Hudkins, R. L. Bioorg Med Chem Lett 2006, 16, 938; (d) Muchowski, J. M.; Scheller, M. E. Tetrahedron Lett 1987, 28, 3453; (e) Lee, C. K.; Bae, S. K.; Chung, B. Y.; Hahn, C. S. J Org Chem 1983, 48, 2488; (f) Ohno, M.; Shimizu, S.; Eguchi, S. Heterocycles 1991, 32, 1199.
[8] Jones, R. A.; Marriott, M. T. P.; Rosenthal, W. P.; Arques, J. S. J Org Chem 1980, 45, 4515.
[9] Ohno, M.; Shimizu, S.; Eguchi, S. Tetrahedron Lett 1990, 31, 4613.
[10] Xiao, D.; Ketcha, D. M. J Heterocycl Chem 1995, 32, 499.
[11] Kim, H. H.; Goo, Y. M.; Lee, Y. Y. Bull Korean Chem Soc 1999, 20, 929.
[12] Keil, J.-M.; Kampchen, T.; Seitz, G. Tetrahedron Lett 1990, 31, 4581.
[13] Booth, R. J.; Lee, H. H.; Kraker, A.; Ortwine, D. F.; Palmer, B. D.; Sheehan, D. J.; Toogood, P. L. U.S. Pat. 20050250836 (2005); Chem Abstr 2005, 143, 460136 (166 examples).
[14] Kanai, F.; Murakata, C.; Tsujita, T.; Yamashita, Y.; Mizukami, T.; Akinaga, S. PCT Int Appl, WO Pat. 2003051883 A1 20030626 CAN 139:69289 AN 2003:491229 (2003); Chem Abstr 2003, 139, 69289 (23 examples).
[15] Nagai, T.; Myokan, I.; Takashi, F.; Nomura, Y.; Mizutani, M.; Hori, T. Jpn. Pat. 3,178,880 (1993); Chem Abstr 1994, 120, 106973. Although this patent claims the method of Diels-Alder reactions of 2-vinylpyrroles to make $2-\mathrm{H}$ and $3-\mathrm{H}$ indoles, of the 88 examples given, only two products are $2-\mathrm{H}$ indoles, both of which are $3-\mathrm{Me}$ indoles and only one of which has an $N-\mathrm{H}$.
[16] Silverstein, R. M.; Ryskiewicz, E. E.; Willard, C. Org Synth Coll 1963, 4, 831.
[17] (a) Trofimov, B. A.; Oleinikova, E. B.; Sigalov, M. V.; Skvortsov, Y. M.; Mikhaleva, A. I. J Org Chem USSR (Engl Transl) 1980, 16, 366; (b) Herz, W.; Courtney, C. F. J Am Chem Soc 1954, 76, 576; (c) Brittain, J. M.; Jones, R. A.; Arques, J. S.; Saliente, T. A. Synth Commun 1982, 12, 231; (d) Shostakovskii, V. M.; Musaev, A. U.; Vasil-vitskii, A. E.; Guliev, A. M.; Nefedov, O. M. Bull Acad Sci USSR Div Chem Sci 1989, 38, 641; (e) Molander, G. A.; Knight, E. E. J Org Chem 1998, 63, 7009; (f) Saliente, T. A.; Jones, R. A.; Llorca, R. T. S.; Arques, J. S. J Chem Res (S) 1985, 12; (g) Lee, C. K.; Ahn, Y. M. J Heterocycl Chem 1989, 26, 397; (h) Tashiro, M.; Kiryu, Y.; Tsuge, O. Bull Chem Soc Jpn 1975, 48, 616; (i) Lee, C. K. Bull Korean Chem Soc 1984, 5, 50.
[18] (a) Wrackmeyer, B.; Schwarze, B. J Organomet Chem 1997, 534, 181; (b) Jones, R. A.; Lindner, J. A. Aust J Chem 1965, 18, 875.
[19] (a) Waser, J.; Gaspar, B.; Nambu, H.; Carreira, E. M. J Am Chem Soc 2006, 128, 11693; (b) Overberger, C. G.; Wartman, A.; Salamone, J. C. Org Prep Proced 1969, 1, 117.
[20] (a) Trumbo, D. L. Polym Bull 1992, 29, 321; (b) Finzi, C.; Fernandez, J. E.; Randazzo, M.; Toppare, L. Macromolecules 1992, 25, 245.
[21] Greenwald, R.; Chaykovsky, M.; Corey, E. J. J Org Chem 1963, 28, 1128.
[22] Schlosser, M.; Christmann, K. F. Angew Chem Int Ed Engl 1966, 5, 126.
[23] Cava, M. P.; Deana, A. A.; Muth, K.; Mitchell, M. J. Org Synth Coll 1973, 5, 944.
[24] Bertrand, M. P.; Coantic, S.; Feray, L.; Nouguier, R.; Perfetti, P. Tetrahedron 2000, 56, 3951.
[25] Woodward, R. B.; Hoffmann, R. Angew Chem Int Ed Engl 1969, 8, 781.
[26] Du, H.; He, Y.; Sivappa, R.; Lovely, C. J. Synlett 2006, 965.
[27] (a) Lovely, C. J.; Du, H.; Sivappa, R.; Bhandari, M. R.; He, Y.; Dias, H. V. R. J Org Chem 2007, 72, 3741; (b) Pindur, U.; Eitel, M. Helv Chem Acta 1988, 71, 1060.
[28] Mikami, K.; Shimizu, M. Chem Rev 1992, 92, 1021.
[29] (a) Fatiadi, A. J. Synthesis; 1976, 65; (b) Giovanoli, R.; Stahli, E.; Feitknecht, W. Helv Chim Acta 1970, 53, 453; (c) Giova-
noli, R.; Bernhard, K.; Feitknecht, W. Helv Chim Acta 1968, 51, 355; (d) Vereshchagin, L. I.; Gainulina, S. R.; Podskrebysheva, S. A.; Gaivoronskii, L. A.; Okhapkina, L. L.; Vorob-eva, V. G.; Latyshev, V. P. J Org Chem USSR (Engl Transl) 1972, 8, 1143.
[30] Rummens, F. H. A.; Kaslander, L. Can J Spectrosc 1972, 17, 99.
[31] van den Berg, E. M. M.; Jansen, F. J. H. M.; de Goede, A. T. J. W.; Baldew, A. U.; Lugtenburg, J. Recl Trav Chim Pays-Bas 1990, 109, 287.

